Зворотний зв'язок

Шпора з економетрики

= , (1.68)

В залежності від наявного програмного засобу зручніше використовувати перший чи другий варіант формули. Опишемо, як скористатись другим способом. Для цього треба знайти суму квадратів залишків RSSU у вихідній моделі та суму квадратів залишків RSSR y моделі з обмеженнями. Запишемо обмеження у такому вигляді:

та .

Підставимо ці співвідношення до рівняння (1.66)

. (1.69)

Перенесемо в (1.69) всі відомі величини до правої частини рівняння і зберемо подібні при параметрах регресії в його лівій частині:

Щоб знайти суму квадратів залишків RSSR y моделі з обмеженнями, потрібно оцінити регресію змінної відносно і константи.

24.Перевірка гіпотез про стійкість моделіПрипустимо, що ми хочемо побудувати модель деякої економічної системи за даними, що є часовими рядами. Нехай, наприклад, потрібно оцінити макроекономічну виробничу функцію для деякої країни за щорічними даними, причому на протязі періоду, який досліджується, відбулась економічна реформа. Природньо постає питання: чи маємо ми право користуватись єдиною моделлю на протязі всього періоду часу. Відповідь на подібні питання можна одержати за допомогою дослідження моделі на стійкість.

Критерій дисперсійного аналізу (критерій переломної точки Чау)

Розглянемо модель

(1.70)

У нашому розпорядженні є n спостережень, які розбито на дві групи з n1 та n2 спостережень відповідно (n = n1 + n2). Гіпотеза про стійкість моделі полягає у тому, що параметри регресії однакові для обох груп спостережень. Для перевірки гіпотези потрібно оцінити модель тричі: за всіма спостереженнями і кожною групою окремо. Введемо такі позначення:

RSS – сума квадратів залишків у моделі, яка оцінена за всіма n спостереженнями,

RSS1 – сума квадратів залишків у моделі, яка оцінена за першими n1 спостереженнями

RSS2 – сума квадратів залишків у моделі, яка оцінена за останніми n2 спостереженнями.

Якщо гіпотеза про стійкість моделі вірна, то

. (1.71)

Прогностичний Критерій Чау

Застосовується у випадках, коли одна з двох груп нараховує невелику кількість спостережень, недостатню для знаходження оцінок. Нехай, для визначеності, n1 > n2. Для перевірки гіпотези потрібно оцінити модель (1.70) двічі: за всіма спостереженнями і за більшою групою. Позначимо :

RSS – сума квадратів залишків у моделі, яка оцінена за всіма n спостереженнями,

RSS1 – сума квадратів залишків у моделі, яка оцінена за більшою групою з n1 спостереження.


Реферати!

У нас ви зможете знайти і ознайомитися з рефератами на будь-яку тему.







Не знайшли потрібний реферат ?

Замовте написання реферату на потрібну Вам тему

Замовити реферат