Шпора з економетрики
H0:+=1. (1.64)
Гіпотеза (1.64) є прикладом гіпотези про лінійне обмеження на параметри регресії, яка у загальному випадку записується так:
, де rj, та q – відомі числа,
Нерідко виникає потреба перевірити гіпотезу про те, що кілька лінійних обмежень виконуються водночас, іншими словами, гіпотезу про сукупність лінійних обмежень. Так, відсутність сезонного ефекту в моделі (1.63) означає, що коефіціенти при сезонних фіктивних змінних дорівнюють нулю водночас. Отже перевірка твердження про відсутність сезонного ефекту зводиться до перевірки наступної гіпотези:
H0: .
У матричному вигляді гіпотеза про сукупність лінійних обмежень записується так,
R=q,
де R i q відомі. Кількість рядків матриці R дорівнює кількості обмежень, а кількість стовпчиків – кількості компонент .
Оскільки рівняння вібіркової регресії є рівнянням лінійної функції, то модель лінійної регресії має наступну властивість. При зміні xj на одиницю y зміниться на bj, якими б не були значення решти змінних. Оскільки різні фактори часто взаємодіють між собою, дана властивість не завжди є реалістичною. Тому, щоб відобразити цю взаємодію, доцільно також спробувати включити до моделі добутки вихідних незалежних змінних як нові незалежні змінні. Наприклад, разом з моделлю.
можна розглянути модель
. (1.65)
Якщо в моделі (1.65) x1 зміниться на одиницю, а x2 та x3 залишаться постійними, то y зміниться на 1 + 1 x2 + 2 x3. Отже, величина зміни незалежної змінної залежить від значень x2 та x3. Цей ефект виникає внаслідок того, що різні незалежні змінні взаємодіють між собою. Щоб перевірити, чи є взаємодія несуттєвою, потрібно перевірити гіпотезу
H0: .
Ми побачили, як виникають задачі перевірки гіпотез про лінійні обмеження. Тепер перейдемо до їх розв’язку. Припустимо, ми маємо рівняння множинної регресії:
. (1.66)
Нам потрібно перевірити гіпотезу про обмеження:
H0: . (1.67)
У матричному вигляді гіпотеза формулюється так:
R=q,
де , , .
Гіпотеза перевіряється за допомогою критерія Вальда (див. параграф 1.6.5). Статистика, розподіл якої за умови вірності обмежень є розподілом Фішера (кількості степенів свободи = кількість обмежень,r, і n-k), має вигляд