Шпора з економетрики
1.Що таке економетрика
Економетрика – це галузь економічної теорії, яка вивчає моделі економічних систем у формі, що уможливлює перевірку цих моделей на адекватність засобами математичної статистики. Мета економетрики – здійснювати емпіричну перевірку положень економічної теорії, підтверджуючи чи відхиляючи останні. Цим економетрика відрізняється від математичної економіки, зміст якої полягає виключно у застосуванні математики, і теоретичні положення якої не обов’язково потребують емпіричного підтвердження. Економетрика є результатом синтезу економічної теорії, математичної статистики та економічної статистики. Застосування статистичних методів до аналізу економічних даних має давню історію. Стіглер зауважує, що перша «емпірична» крива попиту була опублікована Чарльзом Дейвенентом у 1699 році, а перше сучасне статистичне дослідження попиту було виконано італійським статистиком Родульфо Еніні у 1907 році. Важливим поштовхом до розвитку економетрики було заснування у 1930 році у США Економетричного Товариства і публікація часопису Econometrica (який, до речі, виходить і досі).
Економічні і економетричні моделі
Економічна модель являє собою набір припущень, які приблизно описують поведінку економіки (або сектора економіки). Економетрична модель складається з таких частин: 1). Набір рівнянь поведінки, які виводяться з економічної моделі. Ці рівняння включають деякі змінні, значення яких спостерігаються, а також «збурення», які відтворюють ефект від змінних, не включених до моделі у явному вигляді, та ефект від непередбачуваних подій. 2). Опис імовірнісного розподілу «збурень».
Економетричні моделі мають стохастичний характер. Розглянемо співвідношення між споживанням С та доходом Y у такому вигляді:
С = + Y + , (В.1)
де – збурення, або стохастична складова моделі, і – невідомі параметри, які можна оцінити за допомогою методів математичної статистики.
Стохастичний характер економетричних моделей дозволяє використовувати теорію статистичних висновків для перевірки цих моделей на адекватність. Перевірка складається з двох етапів: статистичного і економічного. На статистичному етапі ми перевіряємо, чи виконуються вимоги, які накладено на стохастичну складову при формулюванні моделі. На економічному етапі ми перевіряємо, чи узгоджуються знайдені оцінки параметрів з положеннями економічної теорії. Наприклад, теорія споживання стерджує, що зі зростанням доходу споживання зростає, але не в такій мірі як доход. Звідси випливає, що модель (В.1) коректна, коли в ній 0 < < 1.
Таким чином, економетричні методи дозволяють не тільки встановлювати кількісні зв’язки між економічними змінними, але й робити висновки про коректність одержаних моделей.
В першому розділі книзі подано огляд результатів стосовно базової економетричної моделі – моделі лінійної регресії, в тому числі теми, які традиційно не включаються до елементарних курсів економетрики: асимптотична теорія, автокореляція внаслідок неправильної специфікації моделі, спатіальна автокореляція, консистентні в умовах гетероскедастичності оцінки коваріаційної матриці для МНК, метод максимальної правдоподібності включаючи оцінювання коваріаційної матриці і три основні принципи перевірки гіпотез.
Розділ 2 присвячений моделям з лаговим змінним. В Розділі розглядаються (більш грунтовно, ніж в елементарних курсах) системи одночасних рівнянь, а в Розділі 4 – моделі з обмеженою залежною змінною і моделі з панельними даними. В Додатку 2. Приведено коротке керівництво користувача програми Eviews.
2. Проста лінійна регресія
Припустимо, що існують дві змінні x i y, де x - незалежна змінна (регресор), y - залежна змінна. Співвідношення між цими змінними позначимо: y = f (x). Будемо розрізняти детерміновані і статистичні співвідношення. При статистичному співвідношенні кожному значенню x відповідає не єдине значення y, але залежну змінну y можливо точно описати у імовірнісних термінах. Припустимо, що функція f(x) лінійна за x, тобто f(x) = + x, а співвідношення між x та y є статистичним, а саме