Зворотний зв'язок

Шпора з економетрики

Ми бачимо, що вектор залишків ортогональний до кожного стовпчика матриці X. Згадаємо, що j-й стовпчик цієї матриці утворюють значення j-го регресора. Отже, залишки методу найменших квадратів ортогональні до регресорів. Якщо ми розглядаємо модель з константою, то перший стовпчик матриці X складається з одиниць, і з рівняння (1.37) випливає, що

(1.38)

В моделі з константою сума залишків методу найменших квадратів дорівнює нулю.

Оскільки , то

(1.39)

внаслідок (1.39). Крім того вектор є лінійною комбінацією стовпчиків матриці X, тобто регресорів. Разом з (1.39) це дозволяє дати наступну геометричну інтерпретацію вектору і залишкам: є ортогональною проекцією на гіперплощину, породжену регресорами, а вектор залишків є проектором.

Зі співвідношення (1.39) випливає ще один важливий наслідок: в моделі з костантою регресійна гіперплощина проходить через точку, координати якої дорівнюють середнім значення незалежних змінних.

14.Розклад дисперсії залежної змінної. Коефіцієнт детермінації

В цьому параграфі ми розглянемо моделі з константою. Проаналізуємо суму квадратів відхилень значень залежної змінної від середнього – загальну суму квадратів:

(1.40)

внаслідок (1.38), (1.39) і з урахуванням того, що = . Як і раніше, – пояснена сума квадратів, –сума квадратів залишків. Загальна сума квадратів пропорційна до вибіркової дисперсії незалежної змінної. Отже, формула розкладу дисперсії має місце і у випадку множинної регресії

(1.41).

Коефіцієнт множинної детермінаціїї (або, коротко, коефіцієнт детермінації визначається як частка поясненої і загальної сум квадратів

(1.42).

Коефіцієнт множинної детермінації показує, яка частина дисперсії залежної змінної пояснюється за рахунок моделі, або, іншими словами, незалежними змінними в сукупності. Підкреслимо, що коефіцієнт детермінації є мірою тісноти саме лінійного звязку між залежною та незалежними змінними. Коефіцієнт детермінації завжди знаходиться в межах від нуля до одиниці. Чим ближче до 1, тим тісніше звязок. Якщо = 1, це означає, що всі значення y належать гіперплощині, породженій стовпчиками матриці X. Якщо = 0, то лінійний звязок між змінними відсутній. Коефіцієнт детермінації використовується як міра згоди і для множинної регресії.

Зауваження 1

Без використання додаткової інформаціїї не можна робити висновків про те, яке значення вважати великим. Для деяких даних, наприклад, значення 0.8 може бути недостатнім, а в інших випадках величина 0.4 може бути прийнятною.

Зауваження 2

В моделях без константи коефіцієнт детермінації не обов’язково знаходиться в межах від нуля до одиниці, оскількі подвоєний добуток у (1.40) не дорівнює нулю. В таких моделях різні способи визначення дають різні результати, і коефіцієнт детермінації важко інтерпретувати. Ні в якому разі не можна співвідносити моделі з константою і без константи на підставі порівняння коефіцієнтів детермінації. Взагалі, можна дати таку рекомендацію. Якщо немає економічних підстав для вибору регресійної функціі у вигляді без константи, то бажано розглядати модель з константою.


Реферати!

У нас ви зможете знайти і ознайомитися з рефератами на будь-яку тему.







Не знайшли потрібний реферат ?

Замовте написання реферату на потрібну Вам тему

Замовити реферат