Зворотний зв'язок

Шпора з економетрики

21. Коефіцієнти еластичності.

Нехай змінна y залежить від змінних x1, ...,xk-1: y = f(x1,...,xk-1). Коефіцієнт еластичності змінної y відносно xi визначається так:

, (1.56)

Найчастіше використовують коефіцієнти еластичності попиту відносно ціни та доходу в моделях попиту. Коефіцієнт еластичності показує, на скільки відсотків зміниться y у відповідь на зміну xi у 1 відсоток за умови, що решта змінних залишиться постійною.

Застосовуючи означення (1.56) до рівняння вибіркової регересії (1.36), одержимо формули для обчислення вибіркових коефіцієнтів еластичності

, (1.57)

З формули (1.57) випливає, що коефіцієнти еластичності залежать від того, при якому значенні змінної вони обчислюються. Стандартним є обчислення коефіцієнтів еластичності при середніх значеннях змінних:

, (1.58)

Відзначимо, що для порівняння не існує критерія, придатного в усіх ситуаціях. При виборі критерія треба враховувати мету дослідження, використовувати знання з тієї галузі економічної теоріїї, яка вивчає досліджуваний об’єкт. Наприклад, при аналізі виробничої функції можна робити порівняння коефіцієнтів еластичності відносно праці та капіталу з урахуванням вартості зміни на один відсоток величини капіталу та обсягу трудових ресурсів.

22. Моделі, які зводяться до моделі лінійної регресії

Розглянемо виробничу функцію Коба–Дугласа:

Y = ALC, (1.59)

де Y–валовий випуск, L–обсяг трудових ресурсів, С–обсяг капіталу (виробничих фондів), A, ,  – параметри. Коефіцієнт пропорційності A відображає рівень технології. Парамери  та  є коефіцієнтами еластичності відносно праці та капіталу (отже, функція Коба–Дугласа є виробничою функцією зі сталою еластичністю). Прологарифмувавши рівняння (1.59), маємо:

y = a + l + c, (1.60)

де a = lnA, l = lnL, c = lnC. Якщо ввести до рівняння (1.60) стохастичний доданок, то одержимо модель лінійної регресії:

y = a + l + c +. (1.61)

Щоб перетворити вихідну модель (1.59) на стохастичну, обчислимо експоненту від обох частин рівності (1.61):

Y = ALCe. (1.62)

Ми бачимо, що модель (1.62) можна звести до моделі лінійної регресіі. Аналогічно можна вивчати досить широкий клас моделей, які за допомогою перетворень змінних та рівнянь можна звести до моделі лінійної регресії. Широковживаним є приклад поліноміальної регресії:

.

23. Фіктивні змінні.


Реферати!

У нас ви зможете знайти і ознайомитися з рефератами на будь-яку тему.







Не знайшли потрібний реферат ?

Замовте написання реферату на потрібну Вам тему

Замовити реферат