Зворотний зв'язок

Методи кількісного аналізу ризику

Дана задача вирішувалася б досить просто, якби було б точно відомо, яка з подій П21 або П22 відбудеться. Однак не не¬відомо. В умовах задачі говориться, що ОПР на 70% упевнена в успіху переходу на випуск однієї з нових моделей виробу.

Тобто ймовірність успішного результату в цьому випадку Р(П21) = 0,7. Оскільки П21 і ІІ22 складають повну систему по¬дій, то Р(П22) = 1 - Р(П21) = 0,3.

Ці суб'єктивні імовірності, відомі до ухвалення рішення, є апріорними. Якщо ОПР замовить дослідження маркетинго¬вому агентству, то вона врахує його результати у своєму вис¬новку, отже, первинні імовірності Р(П21) і Р(П22) будуть уточ¬нені. При цьому буде внесена поправка, яка враховує як харак¬тер прогнозу (пророкування) маркетингового агентства, так і його точність. Це можна оцінити цілком об'єктивно, оскільки відомо, наскільки прогнози аналітиків виправдувалися, коли вони прогнозували успішний результат і коли невдачу (див. умови задачі).

Виходячи з наявних статистичних даних, дійсно успішне виведення нових товарів на ринок тими виробниками, що замовляли маркетингове дослідження, у 60% випадків попе¬редньо передвіщалося маркетинговим агентством. Або ймовір¬ність того, що свідчення, яке підтверджує успіх, мало місце при успішному виведенні нового товару на ринок Р(П11/П21;) = 0,6. Оскільки П11 (свідчення, що підтверджує успіх) і П12 (свід¬чення, що підтверджує невдачу) складають повну систему по¬дій, то випливає, що Р(П12/П21) = (1 - 0,6) = 0,4.

Аналогічно, ймовірність того, що свідчення, яке підтвер¬джує невдачу мало місце при невдачі виведення нового товару на ринок Р(П12/П22) - 0,8.1 відповідно Р(П11/П22) = 0,2.

Ці дані будуть впливати на попередні суб'єктивні оцінки. Тому, ці дані, а також задані в умовах імовірності показано на рис. 7 (прямий шрифт). При цьому ймовірності фіктивних подій приймаємо рівними 1, тобто Р(П10) = 1 і Р(П20)= 1 (щоб не впливати на результати розрахунків).

Звертанню за висновками до маркетингового агентства на дереві рішень (рис. 7) відповідають дія Д11 і події П11 або П12.

Розрахуємо апостеріорні імовірності подій П21 і П22 з урахуванням результатів висновків маркетингового агентства (П21 і П22).

Для розрахунків використовуємо другу форму запису фор¬мули Байєса (23).

Імовірність успіху при пророкуванні успіху

Імовірність невдачі при пророкуванні успіху 02-03

Імовірність успіху при пророкуванні невдачі

Імовірність невдачі при пророкуванні невдачіДалі розрахуємо імовірності пророкування успіху і невдачі Р(П11) і Р(П12). Для нього розв'яжемо рівняння Байеса (пер¬ша форма запису, див. рівняння 23) відносно Р(Е):

Позначимо розраховані імовірності на відповідних гілках дерева рішень на рис. 7 (показано курсивом).

Алгоритм знаходження оптимального рішення має такий вигляд:

1. Для кожного стану Г1-Г9 (див. рис. 6) обчислюємо зна¬чення очікуваних величин: Е(Г1) = 0; Е(Г2) = 13,4; Е(Г3) = 16,5; Е(Г4) = -0,3; Е(Г5) = 16,95; Е(Г6) = 24,1; Е(Г7) = -0,3; Е(Г8) = 9,56; Е(Г9) = 8,96.

Приклад розрахунку для Е(Г9):

2.Для кожного стану B1 – B3 (див. рис. 6) виберемо гілку І-1, І-11 або І-12, до якої належить максимальний очікуваний приріст прибутку: Е(В1) = 16,5; Е(В2) = 24,1; Е(В3) - 9.56.

3.У кожному стані Б1 – Б2 (див. рис. 6) обчислимо макси¬мальний очікуваний приріст прибутку: Е(Б1) = 16,5; Е(Б2) = 16,54.


Реферати!

У нас ви зможете знайти і ознайомитися з рефератами на будь-яку тему.







Не знайшли потрібний реферат ?

Замовте написання реферату на потрібну Вам тему

Замовити реферат