Похідна та її застосування
Теорема: Якщо функції u(x) і (x) мають похідні у всіх точках інтервалу (a; b), то
(u(x)(x))’ = u’(x)’(x)
для любого х є (a; b). Коротше,
(u)’ = u’
Доведення: Суму функцій u(x)+(x), де х є (a; b), яка представляє собою нову функцію, позначимо через f(x) і знайдемо похідну цієї функції,
Нехай х0 – деяка точка інтервалу (a; b).
Також,
Так як
х0 – допустима точка інтервалу (a; b), то маємо:
Випадок добутку розглядається аналогічно. Теорема доведена.
Наприклад,
а)
б)
в)
Зауваження. Методом математичної індукції доводиться справедливість формули (u1(x) + u2 (x) +… кінцевого числа складених.
Теорема. Якщо функції u(x) і (x) мають похідні у всіх точках інтервалу (a; b), то
для любого х є (a; b). Коротше,
Доведення. Позначимо похідні через х є (a; b), і найдемо похідну цієї функції, виходячи із визначення.
Нехай х0 – деяка точка інтервалу (a; b). Тоді
Наслідок. Постійний множник можна виносити за знак похідної:
Доведення. Застосувавши множник можна виносити за знак теорему про похідну де а – число, отримаємо
Приклади.
а)
б)
Похідна частки двох функцій .