Похідна та її застосування
Розділ 1
Основні теоретичні відомості
1.1. Походження поняття похідної
Ряд задач диференціального вирахування був вирішений ще в стародавності.
Основне поняття диференціального вирахування – поняття похідної – виникло в XVII ст. у зв'язку з необхідністю вирішення ряду задач з фізики, механіки і математики, у першу чергу наступних двох: визначення швидкості прямолінійного нерівномірного руху і побудови дотичної до похідної плоскої кривої.
Перша з цих задач була уперше вирішена Ньютоном. Функцію він називав флюентою, тобто поточною величиною (від латинського fluere - текти), похідну ж - флюксіей (від того ж fluere). Ньютон позначав функції останніми літерами латинського алфавіту u, x, y, z, а їх флюксії, тобто похідні від флюент за часом, - відповідно тими ж літерами з крапкою над ними:
Для доказу свого правила Ньютон, випливаючи в основному з Ферма, розглядає нескінченно малий приріст часу dt, що він позначав знаком х0, відмінним від нуля. Вираз x0, що позначається нині і називається диференціалом (dx), Ньютон називав моментом.
Ньютон прийшов до поняття похідної, виходячи з питань механіки. Свої результати в цій області він виклав у трактаті, названому їм «Метод флюксій і нескінченних рядів», що був складений близько 1671 р. Припускають, що Ньютон відкрив свій метод флюксій ще в середині 60-х років XVII в., однак вищезгаданий його трактат був опублікований посмертно лише в 1736 р.
Математиків XV - XVII ст. довго хвилювало питання про перебування загального методу для побудови дотичної в будь-якій точці кривої. Задача ця була зв'язана також з вивченням рухів тіл і з відшуканням екстремумів найбільших і найменших значень різних функцій.Деякі окремі випадки вирішення задач були дані ще в стародавності. Так у «Початках» Евкліда дан спосіб побудови дотичної до окружності, Архімед побудував дотичну до спіралі, що носить його ім'я, Аполлоній - до еліпса, гіперболи і параболи. Однак давньогрецькі вчені не вирішили задачу до кінця, тобто не знайшли загального методу, придатного для побудови дотичної до будь-якої плоскої кривої в похідній її точці.
Із самого початку XVII в. чимало вчених, у тому числі Торрічеллі, Вивиани, Роберваль, Барроу, намагалися знайти вирішення питання, прибігаючи до кінематичних міркувань. Перший загальний спосіб побудови дотичної до алгебраїчної кривої був викладений у «Геометрії» Декарта. Більш загального і важливим для розвитку диференціального вирахування був метод побудови дотичних Ферма.
Ґрунтуючись на результатах Ферма і деяких інших висновках, Лейбниц значно повніше своїх попередників вирішив задачу, про яку йде мова, створивши відповідний алгоритм. У нього задача знаходження tgj , тобто кутового коефіцієнта дотичної в точці М, до плоскої кривої, обумовленою функцією , зводиться до знаходженню похідної функції y по незалежній змінній x при даному її значенні (або в даній точці) x = x1.
Можна навести й інші приклади, що показують, яку велику роль грає поняття похідної в науці і техніці: прискорення – є похідна від швидкості за часом, теплоємність тіла – є похідна від кількості тепла по температурі, швидкість радіоактивного розпаду – є похідна від маси радіоактивної речовини за часом і т.п. Вивчення властивостей і способів обчислення похідних і їхнє застосування до дослідження функцій складає головний предмет диференціального вирахування.
Перша друкована праця по диференціальному вирахуванню була опублікована Лейбницем у 1684 р. Це були мемуари, що з'явилися в 1682 р. в математичному журналі «Acta Eruditorum» (прототип «Навчальних записок») і озаглавлений «Новий метод максимумів і мінімумів, а також дотичних, для якого не є перешкодою дробові й ірраціональні кількості, і особливий для цього рід вирахування». У цій статті, що складається усього лише з 6 сторінок, міститься виклад суті методу вирахування нескінченно малих, зокрема викладаються основні правила диференціювання. Отже, якщо в «Методі флюксій» як первісне поняття фігурує швидкість, то в «Новому методі» Лейбница таким поняттям є дотична .
Збільшення абсциси Лейбниц позначав через dx, що відповідає збільшенню ординати – через dy. Нині уживаний символ похідної