Зворотний зв'язок

Похідна та її застосування

знайдемо значення функції в критичній точці і на кінцях відрізка:

Приклад 2. Знайти найбільше та найменше значення функції на відрізку [a;b]

Розв’язання. Функція визначена і неперервна на відрізку , диференційна в інтервалі (-1;1). Тому вона набуває на даному відрізку найбільшого і найменшого значення. Знайдемо критичні точки даної функції. Для цього знайдемо похідну

і прирівняємо її до нуля:

х4+8х=0; х=0; х=-2.

Отже, на інтервалі (-1;1)функція має лише одну критичну точку х=0. знайдемо значення функції в цій точці .

Обчислимо значення функції на кінцях відрізка

1.5. Означення дотичної, піддотичної, нормалі

Нехай функція y=f(x) диференційована в точці х0. рівняння дотичної до графіка функції y=f(x) в цій точці має такий вигляд:

де х і у – біжучі координати дотичної, f ‘(x0)=k – кутовий коефіцієнт дотичної, який дорівнює значенню похідної в точці х0, тобто тангенс кута нахилу дотичної до доданого напрямку осі абсцис.

Відрізок АВ, що міститься між абсцисою точки дотику і точкою перетину дотичної з віссю абсцис, називають під дотичною. Її довжина дорівнює |х0-х1|.

Пряма МС, перпендикулярна до дотичної в точці її дотику М до графіка функції у=f(x), називається нормаллю.

Рівняння нормалі записують у вигляді:

якщо f ‘(x0) 0(в противному разі рівняння нормалі х-х0=0).

На цей матеріал можна скласти ряд задач. Розглянемо деякі з них.

1. Дано абсцису точки дотику х0 графіка функції у=f(x), а необхідно записати рівняння дотичної, що проходить через точку з цією абсцисою.

Для цього знаходимо похідну функції у=f(x), її значення в точці х0, тобто , та значення функції в точці х0, тобто . Цих даних достатньо, щоб записати рівняння дотичної .

2. Який кут утворює дотична з додатним напрямком осі абсцис, якщо відома абсциса точки дотику х0?

Оскільки кутовий коефіцієнт дотичної ,то .

Таким чином, задача зводиться до знаходження похідної функції у=f(x), тобто y’=f ‘(x), і обчислення її значення в точці х0.

3. Знайти гострий кут між дотичними, проведеними до графіків функцій ,що мають спільну абсцису х0:

4. Знайти довжину дотичної до графіка функції у=f(x), абсциса точки дотику якої дорівнює х0.

Довжиною дотичної прийнято називати відстань між точкою дотику до графіка функції і точкою її перетину з віссю абсцис.


Реферати!

У нас ви зможете знайти і ознайомитися з рефератами на будь-яку тему.







Не знайшли потрібний реферат ?

Замовте написання реферату на потрібну Вам тему

Замовити реферат