МНОЖИНИ І ВІДНОШЕННЯ
Рис.1.2.
Відповідність можна задавати, визначаючи співвідношення, яким мають задовольняти її обидві координати. Наприклад, якщо розглянемо класичну координатну площину R2=RR, то маємо такі відповідності C1={(x,y) | x2 + y2 = 1}, C2 = {(x,y) | y = x2 }, C3 = {(x,y)| |x|1, |y|1}. Графіком відповідності C1 є коло радіуса 1 з центром у початку координат, графіком C2 - квадратична парабола, а графіком C3 - всі точки квадрата з вершинами (-1,-1),(-1,1),(1,1) і (1,-1).
Припустимо, що CAB деяка відповідність.
Множина Pr1C називається областю визначення, а множина Pr2C - областю значень відповідності C (інші позначення - С і С відповідно).
Якщо Pr1C=A, то відповідність C називається всюди або повністю визначеною. В противному разі відповідність називається частковою.
Образом елемента aPr1C при відповідності C називається множина всіх елементів bPr2C, які відповідають елементу a.
Прообразом елемента bPr2C при відповідності C називається множина всіх тих елементів aPr1C, яким відповідає елемент b.
Якщо APr1C, то образом множини A при відповідності C називається об’єднання образів усіх елементів з A. Аналогічно означається прообраз деякої множини BPr2C.
Оскільки відповідності є множинами, то до довільних відповідностей можуть бути застосовані всі відомі теоретико-множинні операції: об’єднання, перетин, різниця тощо.
Додатково для відповідностей введемо дві специфічні операції.
Відповідністю, оберненою до заданої відповідності C між множинами A і B, називається відповідність D між множинами B і A така, що
D ={(b,a) | (a,b)C}. Відповідність, обернену до відповідності C, позначають C-1.
Якщо задано відповідності CAB і DBF, то композицією відповідностей C і D (позначається CD ) називається відповідність H між множинами A і F така, що
H = { (a,b)| існує елемент cB такий, що (a,c)C і (c,b)D }.
Розглянемо окремі важливі випадки відповідностей.
Відповідність fAB називається функціональною відповідністю або функцією з A в B, якщо кожному елементові aPr1f відповідає тільки один елемент з Pr2f, тобто образом кожного елемента aPr1f є єдиний елемент з Pr2f. Якщо f - функція з A в B, то кажуть, що функція має тип A B і позначають f:AB або A B. Зокрема, всі функції, які вивчаються в елементарній математиці, є окремими випадками функціональних відповідностей з R2= RR або функціями типу R R.
Всюди визначена функціональна відповідність fAB називається відображенням A в B і записується як і функція f:AB або A B. Відображення називають також всюди або повністю визначеними функціями.
Відображення типу A A називають перетвореннями множини A.
Через BA позначається множина всiх вiдображень з A в B.Оскільки функція і відображення є окремими випадками відповідності, то для них мають місце всі наведені вище означення: поняття областей визначення та значень, поняття образу та прообразу елементів і множин та ін. Зокрема, для функції f елементи множини Pr1f називають аргументами функції, образ елемента aPr1f позначають через f(a) і називають значенням функції f на a. Прообраз елемента bPr2f позначають через f-1(b). Аналогічно позначаються образ і прообраз множини.