МНОЖИНИ І ВІДНОШЕННЯ
Неважко переконатись, що A=B тоді і тільки тоді, коли одночасно виконуються два включення: AB і BA. Крім того, якщо AB і BC, то AC. Останні два факти часто використовуються при доведенні тверджень про рівність двох заданих множин.
Якщо AB, однак AB, то пишуть AB і називають множину A власною (строгою або істинною) підмножиною множини B. Знак (або), на відміну від знака (або ), називається знаком строгого включення.
Очевидно, що для будь-якої множини A виконується AA. Крім того, прийнято вважати, що порожня множина є підмножиною будь-якої множини A, тобто A (зокрема, ).
Слід чітко розуміти різницю між знаками і і не плутати ситуації їхнього вживання. Якщо {a}M, то aM, і навпаки.
Однак із включення {a}M, взагалі кажучи, не випливає {a}M. Для будь-якого об’єкта x виконується x. Наприклад, для множини D (1.1) і її елементів виконуються такі співвідношення: {a,b}D, {{a,b},{b,c}}D, a{a,b}, {c}{a,c}, {a}{a,b}.
4. Операції над множинами та їхні властивості
Для множин можна ввести ряд операцій (теоретико-множинних операцій), результатом виконання яких будуть також множини. За допомогою цих операцій можна конструювати із заданих множин нові множини.
Нехай A і B деякі множини.
а) Об’єднанням множин A і B (позначається AB ) називається множина тих елементів, які належать хоча б одній з множин A чи B. Символічно операція об’єднання множин записується так
A B = { x | xA або xB} або xAB
Приклад 1.3. {a,b,c} {a,c,d,e} = {a,b,c,d,e}.
б) Перетином множин A і B (позначається AB ) називається множина, що складається з тих і тільки тих елементів, які належать множинам A і B одночасно. Тобто
AB = { x | xA і xB} або xAB
Приклад 1.4. {a,b,c}{a,c,d,e} = {a,c},
{a,b,c}{d,e} .
Кажуть, що множини A і B не перетинаються, якщо AB .
Операції об’єднання та перетину множин можуть бути поширені на випадок довільної сукупності множин {Ai | iІ}. Так об’єднання множин Ai (записується Ai ) складається з тих елементів, які належать хоча б одній з множин Ai даної сукупності. А перетин множин A (записується Ai) містить тільки ті елементи, які одночасно належать кожній з множин Ai.
в). Різницею множин A і B (записується A\B ) називається множина тих елементів, які належать множині A і не належать множині B. Отже,
A \ B = { x | xA і xB} або xA \ B
Приклад 1.5. {a,b,c} \ {a,d,c} = {b},
{a,c,d,e} \ {a,b,c} = {d,e},