Зворотний зв'язок

Диференціальні рівняння першого порядку (з відокремлюваними змінними, однорідні, лінійні, Бернуллі)

.

Тоді загальний розв'язок рівняння набуває вигляду

,або .

Поклавши тут і , знайдемо, що .

Отже, частинний розв'язок поставленої задачі матиме вигляд

.

Приклад 3. З фізики відома залежність між силою стуму та електрорушійною силою в колі, яке має опір та самоіндукцію ( та - сталі):

.

Якщо , то це рівняння повністю збігається з диференціальним рівнянням, розглянутим у прикладі 2, хоч описувані процеси зовсім різні.

Нехай . Тоді відносно маємо диференціальне рівняння, яке зручно записати у вигляді

.

Знайдемо загальний розв'язок цього лінійного рівняння. Нехай , де та - невідомі функції. Тоді Після підстановки в рівняння та маємо:

або .

Невідому функцію знайдемо з рівняння

,звідки . Величина визначається з рівності ,

звідки

,

де довільна стала. Позначимо інтеграл, що фігурує справа, через : . Інтегруючи двічі частинами, отримаємо

,

а функцію визначимо за допомогою рівності

.

Отже, сила струму визначається виразом

.

12.5. Рівняння Бернуллі

Диференціальне рівняння виду


Реферати!

У нас ви зможете знайти і ознайомитися з рефератами на будь-яку тему.







Не знайшли потрібний реферат ?

Замовте написання реферату на потрібну Вам тему

Замовити реферат