Диференціальні рівняння першого порядку (з відокремлюваними змінними, однорідні, лінійні, Бернуллі)
Означення. Диференціальне рівняння вигляду
(12.25)
називається рівнянням у повних диференціалах, якщо - неперервні диференційовані функції, для яких
виконується співвідношення
, (12.26)
причому та - також неперервні функції.
Покажемо, що коли ліва частина рівняння (12.25) є повним диференціалом деякої функції , то виконується умова (12.26), і навпаки, з виконання умови (12.25) випливає, що ліва частина рівняння (12.25) - повний диференціал (вперше цю умову отримав член Петербурзької академії наук Л.Ейлер (1707-1783)).
Справді, нехай зліва у рівнянні (12.25) стоїть повний диференціал, тобто .
Оскільки
,
маємо
Тоді частинні похідні та визначаються за формулами
.
Оскільки зліва в цих рівностях згідно з умовою записані неперервні функції, то це означає, що й праві частини, тобто та
, також неперервні. Звідси випливає, що , що й доводить рівність (12.26).
Припустимо тепер, що умова (12.26) виконується, і знайдемо функцію , завдяки якій диференціальне рівняння (12.25) можна подати у формі
(12.27)
Оскільки , то інтегруючи, маємо
(12.28)де - абсциса будь-якої точки в області існування розв'язку, а - поки що невідома функція, яка залежить лише від . Знайдемо похідну , користуючись формулою (12.28):
(12.29)
Враховуючи, що і користуючись умовою (12.26) для заміни підінтегральної функції, з (12.29) отримуємо
.
Отже, або
.