Зворотний зв'язок

Диференціальні рівняння першого порядку (з відокремлюваними змінними, однорідні, лінійні, Бернуллі)

2. Якщо , то , оскільки , та . В цьому разі рівняння (12.12) подамо у вигляді

. (12.13)

Якщо в цьому рівнянні виконати заміну змінної за формулою , то рівняння (12.13) перетвориться у диференціальне рівняння з відокремлюваними змінними. Справді, маємо і , отже, .

Перейшовши до нової змінної у рівнянні (12.13), одержимо рівняння

,

у якому змінні легко відокремлюються.

Приклад 4. Розв'язати рівняння

.

Р о з в ' я з о к. Це - диференціальне рівняння вигляду (12.13). Перевіримо, чи виконується для нього нерівність . Отже, в цьому рівнянні слід виконати заміну змінних та за формулами . Підставимо нові змінні у вихідне рівняння:

.

Для визначення і отримаємо алгебраїчну систему двох лінійних рівнянь

головний визначник якої дорівнює і, отже, система має єдиний розв'язок:, . Це дозволяє виконати заміну змінних і: ,

в результаті якої отримуємо однорідне рівняння . Виконаємо в цьому рівнянні заміну змінної за формулою . Маємо .

Відокремлюємо змінні та :

.

Загальний інтеграл цього рівняння має вигляд

або

.

Враховуючи виконані заміни змінних, маємо:

.

Отже, загальний інтеграл вихідного рівняння

або, після спрощень,

.

12.4. Лінійні диференціальні рівняння першого порядку


Реферати!

У нас ви зможете знайти і ознайомитися з рефератами на будь-яку тему.







Не знайшли потрібний реферат ?

Замовте написання реферату на потрібну Вам тему

Замовити реферат