Зворотний зв'язок

Диференціальні рівняння першого порядку (з відокремлюваними змінними, однорідні, лінійні, Бернуллі)

, (12.24)

в якому неперервні функції, а число відмінне від

нуля та одиниці, називається рівнянням Бернуллі (при

маємо лінійне рівняння, а при - рівняння з відокремлюваними

змінними).

Покажемо, що рівняння Бернуллі зводиться до лінійного диференціального рівняння першого порядку. Для цього поділимо ліву й праву частини рівняння (12.24) на :

та виконаємо заміну змінної . Оскільки

,

диференціальне рівняння Бернуллі перетворюється на рівняння

яке є лінійним. Проінтегрувавши його одним з описаних раніше способів і повернувшись від до попередньої змінної , можна отримати розв'язок рівняння Бернуллі.

Зауважимо, що зручніше розв'язувати рівняння Бернуллі, не зводячи його до лінійного, за допомогою підстановки , тобто так само, як і лінійне неоднорідне рівняння.

Покажемо це на прикладі.

Приклад . Розв'язати рівняння Бернуллі

.

Р о з в ' я з о к. Будемо шукати невідому функцію у вигляді.. Підстановка цієї функції у рівняння приводить до рівності або

.

Функцію знайдемо із співвідношення , яке отримується, якщо вираз у дужках прирівняти до нуля: . Відносно отримується рівняння з відокремлюваними змінними

, загальний інтеграл якого буде таким:

,

де довільна стала. Отже, відповідь

.

12.6. Рівняння в повних диференціалах.

Інтегруючий множник


Реферати!

У нас ви зможете знайти і ознайомитися з рефератами на будь-яку тему.







Не знайшли потрібний реферат ?

Замовте написання реферату на потрібну Вам тему

Замовити реферат