Множина комплексних чисел
.
Свойства действий
над комплексными числами
Для любых комплексных чисел α = a + bi, β = с + di, γ = e + fi выполняются следую¬щие свойства действий сложения и умножения:
1) α + β = β + α – переместительное (коммутатив¬ное) свойство сложения;
2) (α + β) + γ = α + (β + γ) – сочетательное (ассоциативное) свойство сложения;
3) αβ = βα – переместительное (комму¬тативное) свойство умножения;
4) (αβ)γ = α(βγ) – сочетательное (ассоциативное) свойство умножения;
5) (α + β)γ = αγ + βγ – распределительное (дистри¬бутивное) свойство умножения относительно сло¬жения.
Докажем, например, первое и третье из этих свойств. По определению сложения получаем
α + β = (a + bi) + (c + di) = (a + c) + (b + d)i,
β + α = (c + di) + (a + bi) = (c + a) + (d + b)i = (a + c) + (b + d)i = α + β,
так как с + a = a + с, d + b = b + d, т. е. для любых действительных чисел выполняется переместительное (коммутативное) свойство сложения. Далее,
αβ = (a + bi)(c + di) = aс + adi + bci + bdi2 = (ac - bd) + (ad + bc)i,
βα = (c + di) (a + bi) = сa + cbi + dai + dbi2 = (ca - db) + (cb + da)i = (ac - bd) + (ad + bc)i = αβ,
поскольку для любых действительных чисел ac = ca, bd = db, т. е. выполняется перемести¬тельное (коммутативное) свойство умножения.
Остальные свойства доказываются аналогично, с учетом соответствующих свойств операций над дей¬ствительными числами.
Таким образом, операции над комплексными числами подчиняются тем же законам, что и опера¬ции над действительными числами.
Возведение в степень комплексного числа.
Извлечение корня из комплексного числа
При возведении в степень комплексного числа пользуются формулой бинома Ньютона:
С помощью формулы бинома Ньютона получаем
В правой части этого равенства заменяют сте¬пени мнимой единицы i их значениями и приводят подобные члены. Рассмотрим, как выражаются эти степени. Учитывая формулу i2 = - 1 , получаем i3 = i2 ∙ i = -1 ∙ i = - i, i4 = i3 ∙ i = -i ∙ i = -i2 = 1, i5 = i4 ∙ i = i, i6 = i5 ∙ i = i2 = -1, i7 = i6 ∙ i = -i, i8 = i7 ∙i = - i2 = 1 и т. д. В общем виде полученный результат можно записать так:
i4k = 1, i4k+1 = i, i4k+2 = -1, i4k+3 = - i (k = 0, 1, 2, …).