Multiple Intelligences as Strategy for Teaching EFL to high school graduates
of talents brings to the fore individuals who previously had been considered unexceptional or even at risk for school failure.
As for the assessment instruments under development, only those of Project Spectrum have been field tested in classrooms. In 1987-89, they used these instruments in two different settings to investigate the hypothesis that the intelligences are largely independent of one another. To examine this hypothesis, we sought to determine (a)
whether young children exhibit distinct profiles of intellectual strengths and weaknesses, and (b) whether or not performances on activities designed to tap different intelligences are significantly correlated. In the 1987-88 academic year, twenty children from a primarily white, upper-middle-income population took part in a year-long Spectrum program. In the 1988-89 academic year, the Modified Spectrum
Field Inventory was piloted with fifteen children in a combined kindergarten and first-grade classroom. This classroom was in a public school in a low- to middle-income school district.
In the preschool study, children were assessed on ten different activities (story telling, drawing, singing, music perception, creative movement, social analysis, hypothesis testing, assembly, calculation and counting, and number and notational logic) as well as the Stanford-Binet Intelligence Scale, Fourth Edition. To compare children's
performances across each of the activities, standard deviations were calculated for each activity. Children who scored one or more standard deviations above the mean were judged to have a strength on that activity; those who scored one or more standard deviations below the mean were considered to have a weakness on that activity. This analysis revealed that these children did not perform at the same level across activities and suggested that they do have distinct intellectual profiles. Of thetwenty children, fifteen demonstrated a strength on at least one activity, and twelve
children showed a weakness on one or more activities. In contrast, only one child was identified as having no strengths or weaknesses, and her scores ranged from -.98 to +.87 standard deviations from the mean.
These results were reinforced by the fact that, for the most part, children's
performances on the activities were independent. Using Spearman rank-order correlations, only the number activities, both requiring logical-mathematical intelligence, proved significantly correlated with one another (r = .78, p < .01). In the other areas, music and science, where there were two assessments, there were no
significant correlations. Conceivably, this result can be attributed to the fact that the number activities, both of which involved calculation, shared more features than the music activities (singing and music perception) or the science activities (hypothesis testing and mechanical skill). Of course, the small sample size also may have contributed to the absence of powerful correlations among measures.
A comparison of the Spectrum and Stanford-Binet assessments revealed a limited relationship between children's performances on these different instruments.
Spearman rank-order correlations showed that only performances on the number activities were significantly correlated with IQ (dinosaur game, r = .69, p < .003; bus game, r = .51, p < .04). With its concentration on logical-mathematic and linguistic skills, one might have expected a significant correlation with the Spectrum language activity as well. Conceivably, there was no significant correlation because the
Stanford-Binet measures children's vocabulary and comprehension, whereas Spectrum measures how children use language within a story-telling task.
In the second study, eight kindergartners (four boys and four girls) and seven first graders (five girls and two boys) were assessed on the seven activities of the Modified Spectrum Field Inventory (MSPFI). This inventory, based on the activities developed for the year-long Spectrum assessments of preschoolers, consists of activities in the
areas of language (storyboard), numbers and logic (bus game), mechanics (assembly), art (drawing), music (xylophone games), social analysis (classroom model), and movement (creative movement). These assessments were administered in two one-hour sessions. Each activity was videotaped and children were scored by two
independent observers. Spearman rank-order correlations between the scores of the
two observers ranged from .88 (language) to .97 (art) and demonstrated the interrater reliability of these scores.
As in the first study, strengths and weaknesses were estimated using standard deviations. Unlike the findings from the earlier study, however, these results revealed that some children performed quite well and others performed quite poorly across many of the activities. It appears that the small sample size and wide age ranges may have contributed to this result. Of the five first-grade girls, none demonstrated a weakness in any area; all showed at least one strength, with one girl having strengths
in six of the seven areas. The two first-grade boys showed no strengths, and both demonstrated weaknesses in three areas. Of the kindergartners, only two showed any strengths, with all but one of the other children showing at least one weakness. Quite possibly, these results reflect differences in developmental level, and perhaps gender