Матеріали до лекцій з теми “Комплексні числа”
5)(1-ί) = (1-2ί +ί) ² = (-2ί) ² = 4ί² = -4;
6)(1+ί) = ((1+ί)²)³ = (2ί) ³ = 8ί³ = -8 ί;
7)(1-ί) = ((1-ί) ²) = (-2ί) = -32ί = -32ί.
Рівності(1+ί)² = 1+2ί + ί²= 2ί, (1-ί) ² = 1-2ί + ί²= -2ί корисно запам’ятати, бо їх часто використовують.
3. Геометрична інтерпретація комплексних чисел.Вивчаючи комплексні числа, можна використовувати геометричну термінологію і геометричні міркування, яякщо встановити взаємно однозначну відповідність між множиною комплексних чисел і множиною точок координатної площини. Цю відповідність можна встановити так. Кожному комплексному числу a + bί поставимо у відповідність точку М(a;b) координатної площини, тобто точку, абсциса якої дорівнює дійсній частині комплексного числа, а ордината – коефіцієнту уявной частини. Кожній точці М(a;b) координатної площини поставимо у відповідність комплексне число (малюнок 1).
Малюнок 1
Очевидно, що така відповідність є взаємно однозначною. Вона дає можливість інтерпретувати комплексні числа як точки деякої площини, на якій вібрано систему координат. Координатну площину називають при цьому комплексною, вісь абсцис – дійсною віссю, бо на ній розміщені точки, що відповідають комплексним числам a + 0ί, тобто відповідають дійсним числам. Вісь ординат називають уявною віссю – на ній лежать точки, які відповідають уявним комплексним числам 0+ bί.
Зручною є також інтерпритація комплексного числа як вектора ОМ (дивіться малюнок 2)
Малюнок 2
Поставимо у відповідність кожному комплексному числу вектор з початком у точці О(0;0) і кінцем у точці М(a;b). Ви знаєте, що такий вектор називають радіус – вектором, а його проекції на осі є координатами вектора. Отже, можна сказати, що геометрични зображенням комплексного числа z = a + bί є радіус – вектор з координатами a і b. Відповідність між множиною комплексних чисел, з одного боку, і множиною точок або векторів площини, з іншого, дає змогу комплексні числа називати векторами аьо точками і говорити, наприклад, про вектор a + bί або про точку a + bί.
На малюнку 2 вектори ОА, OB, OC, OD є відповідними геометричними зображеннями комплексних чисел z₁= 2+2ί; z ₂= -3+4ί; z ₃= -4-3ί; z ₄= 4-2ί.
Протилежним комплексним числам відповідають протилежні вектори.
Малюнок 3
На малюнку 3 зображено дві пари протилежних векторів OA i OC, OB i OD, що відповідають парам протилежних чисел 3+4ί та –3-4ί; -2+3ί та 2-3ί.
Геометричне зображення суми і різниці двох комплексних чисел.
З геометричної інтерпретації комплексних чисел у вигляді векторів випливає можливість геометричного зображення додавання комплексних чисел. Воно знаходиться до знаходження сум двох векторів за відомим правилом паралелограма.
Нехай дано два комплексних числа z₁ = a₁ + b₁ί та z₂ = a₂ + b₂ί, яким відповідають радіус – вектори ОА і ОА (малюнок 4). Побудуємо на цих векторах як на сторонах
Малюнок 4