Зворотний зв'язок

Матеріали до лекцій з теми “Комплексні числа”

Приклади: Обчислити добуток.

1)(3+5ί)(3-5ί) = 9+25 = 34;

2)(2+ί)(2-ί) = 4+1 = 5;

3)(4+3ί)(4-3ί) = 16+3 = 19;4)(х+уί)( х-уί) = х+у;

5)(3/4+2/5ί)(3/4-2/5ί) = 9/16+4/25 = 289/400.

Читаючи рівність (a + bί)( a - bί) = a² + b² справа наліво, робимо висновок, що сумму квадратів будь – яких двох чисел можна подати у вигляді добутку комплексно – спряжених множників.

Приклади: Розкласти на множники двочлени.

1)а+9 = (а+3ί)(а-3ί);

2)16m²+25n² = (4m+5nί)(4m-5nί);

3)49+36 = (7+6ί)(7-6ί);

4)а+16 = (а+4ί)( а-4ί);

5)в+7 = (в+7ί)( в-7ί).

г) Ділення комплексних чисел.

Ділення комплексних чисел означають як дію, обернену до дії множення, коли за даним добутком і одним з множників знаходять другий, невідомий множник. Причому в множині комплексних чисел залишається вимога, щоб дільник був відмінним від нуля.

Означення. Часткою комплексних чисел z₁ = a + bί та z₂ = c + dί називеється таке комплексне число z₃= x+yί, яке при множенні на z₂ дає z₁.

Можливість ділення комплексних чисел і його однозначність потребує доведення.

Доведемо, що частка комплексних чисел z₁ = a + bί та z₂ = c + dί визначена і до того ж однозначно, якщо c + dί≠ 0+0ί. Отже, доведемо, що за умови існує, і до того ж єдине, комплексне число z₃= x+yί, яке при множенні на z₂ дає z₁. За означенням дії ділення, (c + dί)( x+yί) = a + bί. Виконавши в лівій частині цієї рівності дію множення, дістанемо: (c x - dy) + (cy +d x)ί = a + bί.

З умови рівності двох комплексних чисел випливає:

c x - dy= a

cy +d x=b

Система має єдиний розв’язок:

x= (a c +bd)\( c²+d²);

y = (bc- ad)\( c²+d²).


Реферати!

У нас ви зможете знайти і ознайомитися з рефератами на будь-яку тему.







Не знайшли потрібний реферат ?

Замовте написання реферату на потрібну Вам тему

Замовити реферат