Зворотний зв'язок

Задачі з геометрії

Розв’язання.

Позначимо АВ=ВС=а, АМ=с, МС=b, MB=m, ОМ, або > , або . Розглянемо трикутник МВА. Запишемо для сторони АМ за допомогою теореми косинусів рівність:

АМ2=МВ2+АВ2-2МВ*АВ*cos ;

c2=m2+a2-2am cos ;

Звідси одержимо вираз для косинуса кута :

.

Розглянемо трикутник МВС. Використовуючи теорему косинусів, запишемо для сторони ВС:

ВС2=СМ2+МВ2-2СМ*МВ*cos ;

а2=b2+m2-2mb cos ;

Одержимо:

.

Запишемо

Оскільки а-с = b-a, за умовою, то

що й потрібно було довести

Задача 14. Довести, що з усіх трикутників зі спільним кутом при вершині і даній сумі довжини бокових сторін а+b рівнобедрений трикутник має найменшу основу.

Розв’язання Нехай a+b=q; a, b, c – сторони трикутника. За теоремою косинусів запишемо:

Оскільки q i - незмінні, то найменше значення с буде при , тобто при а=b

Задача 15. З усіх трикутників з однаковою основою і одним і тим же кутом при вершині знайти трикутник з найбільшим периметром

Розв’язання.

Розглянемо трикутник АВС з основою АС і позначимо через а, b, c – довжини сторін. Кути, які відповідають сторонам а, b, c позначимо відповідно А, В, С. Покладемо а+b+c=Р.

За теоремою синусів запишемо:

Знайдемо периметр:

Оскільки b>0 i , то р прийме найбільшого значення при . У даному випадку А=С і ΔАВС рівнобедрений.

§2. Задачі на екстремум в стереометрії


Реферати!

У нас ви зможете знайти і ознайомитися з рефератами на будь-яку тему.







Не знайшли потрібний реферат ?

Замовте написання реферату на потрібну Вам тему

Замовити реферат