Задачі з геометрії
Розв’язання.Нехай циліндр утворений обертанням прямокутника АВСD навколо діаметра MN. Нехай AD = x, виразимо об’єм V циліндра як функцію від х. Одержали , тобто , звідки . З АОВ отримаємо АВ2=ОВ2-ОА2, тобто АВ2= . Згідно з формулою , де R – радіус циліндра, Н – його висота, запишемо об’єм циліндра
.
За умовою задачі 0
, якщо 9-х2= 0.
Звідси знаходимо х = 3 (оскільки х > 0). Якщо 0
, то . Значить, х=3 – точка максимума. Оскільки функція визначена для будь-якого х і на всій числовій прямій має одну критичну точку. Отже, при х = 3 функція досягає найбільшого значення.
Надалі розглянемо кілька суто геометричних прийомів розв’язування екстремальних задач. Один із прийомів – симетрія. Цей прийом дуже часто використовується при знаходженні найкоротших ламаних з вершинами на заданих прямих і не тільки.
Задача 9.1. Довести, що серед всіх трикутників, вписаних в даний гострокутний трикутник, найменший периметр має трикутник з вершинами в основі висот даного.
Розв’язання.
Візьмемо довільну точку D на стороні гострокутного трикутника АВС. Знайдемо на АВ і АС точки F i E, так, щоб при заданому D периметр DEF був найменшим. Нехай D1 i D2 – точки симетрії D відносно сторін АС і АВ. В якості вершин Е і F потрібно взяти точки перетину відрізка D1D2 зі сторонами АC і АВ. Справді, периметр трикутника DEF рівний довжині відрізка D1D2, а периметр будь-якого іншого трикутника DE1F1 рівний довжині ламаної D1E1F1D2 > D1D2.
Залишилось визначити положення точки D, при якому D1D2 є найменшим. Розглянемо трикутник D1AD2. Кут при вершині А фіксований (він рівний 2<ВАС), D1A = D2A=DA. Значить D1D2 є найменшим, якщо найменшим є відрізок АD, тобто АD – висота трикутника АВС. Оскільки доведено існування і єдність мінімального (по периметру) трикутника AEF, тоді, повторяючи роздуми відносно інших сторін трикутника АВС, прийдемо до висновку, що Е і F також повинні бути основами відповідних висот трикутника АВС.
Інший корисний прийом ілюструє наступна задача.
Задача 10. Дано кут величиною ( <900). О-вершина кута. На одній із сторін кута взята точка А, ОА = а. Точка В розміщена на тій же стороні, а М – на протилежній стороні так, що
Розв’язання.
Нехай М і В – будь-які дві точки на сторонах кута, для яких
Можна зробити й по-іншому, розглянувши М і В, такі, що описане коло дотикається сторони кута, довести, що відрізок АВ, який ми отримали. Має найменшу довжину. Зрозуміло, що В потрібно взяти на відрізку ОА (мал.2). для будь-якої точки М1, відмінної від М, буде
Знайдемо відрізок АВ, який відповідає цьому положенню точки М. Нехай Р – середина АВ, АВ = 2х, ОР = а-х. МР = х, . Найменше значення довжини відрізка АВ рівне .