Зворотний зв'язок

Задачі з геометрії

то розв’язавши рівняння

2р-с-2х = 0,

знаходимо критичну точку функції me(х):

. Легко переконатися, що m/e(х)<0, якщо х є (0; ), і m/e(х)>0, якщо х є ( ; 2р-с), тому є точкою мінімуму функції me(х), причому me( )= . Оскільки - єдина точка мінімуму на (0; 2р-с), то функція me(х) у точці набуває найменшого значення. Але при х = |AC| = = також i |CB| = , а це означає, що АВС – рівнобедрений. Отже, з усіх трикутників із заданими основою і периметром рівнобедрений має найменшу медіану.

Задача 7. З усіх рівнобедрених трапецій, три сторони яких мають однакову довжину а, знайти ту, яка має найбільшу площу.

Розв’язання.

Нехай |AB| = |BC| = |CD| = a,
Тоді |BE| = a sin x, |AE| = a cos x, а площа трапеції:

S(x)=a2sin x (1+cos x),

Оскільки

S/(x) = a2(2cos2x + cos x - 1) = a(cos x +1)(2 cos x - 1), S(x): xk = tarccos +2k , k 0.

В інтервалі (0; ) лежить тільки одна з них: , причому . Оскільки S/(x)>0, якщо х є (0; ), і S/(x) <0, якщо х є ( ; ), то в точці функція S(x) набуває найбільшого значення. Отже, з усіх рівнобедрених трапецій з трьома сторонами однакової довжини найбільшу площу має та, в якої кут при основі дорівнює 600.

Задача 8. З квадратного листа жерсті із стороною а треба виготовити відкриту зверху коробку, вирізавши по кутах квадратики і загнувши утворені краї. Якою повинна бути сторона основи коробки, щоб її об’єм був максимальним?

Розв’язання.

Позначимо через х довжину сторони коробки. Тоді довжини сторін вирізаних квадратиків дорівнюють , а об’єм коробки дорівнює .

Зі змістом задачі число х задовольняє нерівність 0
Знаходимо критичні точки функції:

,

тобто х = 0 або х = .

А через те, що V(o)=0 i V(a)=0, то найбільшою на відрізку значення функція V набуває, коли х = , тобто

Найбільшого значення функція досягає всередині відрізка [0; а], отже, і всередині інтервалу (0; а). Таким чином, сторона основи коробки повинна бути .

Задача 9. Площа поверхні сфери рівна 27 . Яка висота циліндра найбільшого об’єму, вписаного в цю сферу?


Реферати!

У нас ви зможете знайти і ознайомитися з рефератами на будь-яку тему.







Не знайшли потрібний реферат ?

Замовте написання реферату на потрібну Вам тему

Замовити реферат