Зворотний зв'язок

Порівняння функцій та їх застосування

,

де , тобто виконується асимптотична рівність (1.24).

З результатів пункту 1.1 слідує, що при справедлива наступна еквівалентність нескінченно малих:

З цієї еквівалентності випливають і більш загальні співвідношення, які сформулюємо у вигляді окремої леми.

Лема 4. Якщо функція така, що

(1.25)

то при ,

(1.26)

Доведення. Покажемо, наприклад, що

(1.27)

Нехай функція визначена в деякому проколеному околі точки Покладемо (вважаючи що належить цоьму околі)

(1.28)

Покажемо, що

(1.29)

Нехай задано Оскільки

(тут u - незалежна змінна), існує таке число що при виконується нерівність

Для вказаного в силу (1.25) знайдеться таке число , що для всіх , задовольняючих умову , виконується нерівністьо Отже, якщо і , то

Інакше кажучи, якщо і , то

(1.30)

Якщо ж і , то згідно (1.28) маємо і, отже, нерівність (1.30) очевидно також виконується.

Рівність (1.29) доведена, а оскільки з (1.28) випливає, що для всіх , то доведена справедливість асимптотичної рівності (1.27). Аналогічно доводиться і решта асимптотичні формули (1.26).

Означення 4. Якщо в деякому проколеному околі точки де , то функція називається нескінченно малою в порівнянні з функцією при , пишеться , (читається: є о мале від при , прямучому до ).

Через це означення запис означає просто, що функція є нескінченно малою при ,

Якщо при , та умову


Реферати!

У нас ви зможете знайти і ознайомитися з рефератами на будь-яку тему.







Не знайшли потрібний реферат ?

Замовте написання реферату на потрібну Вам тему

Замовити реферат