Порівняння функцій та їх застосування
Зокрема, справедлива наступна лема.
Лема 5. Якщо функція володіє при , головною частиною вигляду , де А і k - сталі, то серед всіх головних частин такого вигляду вона визначається єдиним чином.
Дійсно, нехай, при ,
і
Тоді ; тому , тобто
що справедливе лише у випадку і .
Поняття головної частини функції корисно при вивченні нескінченно малих і нескінченно великих і з успіхом використовується при розв'язанні різноманітних задач математичного аналізу. Досить часто вдається нескінченно малу складного аналітичного вигляду замінити, в околі даної точки, з точністю до нескінченно малих більш високого порядку, більш простою функцією. Наприклад, якщо вдається представити у вигляді , то це означає, що з точністю до нескінченно малих більш високого порядку, ніж , нескінченно мала поводиться в околі точки , як степенева функція .
Покажемо на прикладах, як метод виділення головної частини нескінченно малих застосовується до обчислення границь функцій. При цьому широко використовуватимемо отримані нами співвідношення еквівалентності (1.26).
Нехай вимагається знайти межу (а значить, і довести, що він існує))
Використовуючи доведену вище (див. (1.26)) еквівалентність ~ при , маємо при , тому (див. теорему 1)) . Проте і , а отже
Далі , унаслідок чого
Очевидно також, що
З асимптотичої рівності , отримаємо
з
а з
Всі ці співвідношення виконуються при . Тепер маємо
тому
Але при , і, значить, по теоремі 2,
Таким чином, шукана границя існує і рівний 2.
При обчисленні границя функцій за допомогою методу виділення головної частини слід мати на увазі, що у випадках, не розглянутих в п. 1.3, взагалі кажучи, не можна нескінченно малі замінювати еквівалентними їм. Так, наприклад, при відшуканні границь вираження
було б помилкою замінити функцію эквивалентній їй при функцією .
Для відшукання границь виразів вигляду цілообразно границю їх логарифмів. Розглянемо подібний приклад. Знайдемо границю . Зауважуючи, що