Зворотний зв'язок

Порівняння функцій та їх застосування

(1.11)

Покажемо, що При цьому без обмеження спільності можна вважати, що Для довільного знайдеться таке натуральне що і, отже, причому в силу Тому маємо:

(1.12)

Наголошуючи, що в силу (1,9)

і

і переходячи до границю в нерівності (1.12) при , отримаємо

Оскільки -первісна послідовність, яка задовільняє умовам (1.11), то тим самим доведено, що

(1.13)

Нехай тепер послідовність така, що.

тобто,

(1.14)

Покладемо , тоді і при чому без обмеження спільності можна вважати, що Тоді

,

де

і

і через вже доведену рівність (1.13)

Але була довільною послідовністю, що задовольняє умовам (1.14), тому

(1.15)

Таким чином, функція має в точці О границі з ліва і права, рівні одному і тому ж числу е. Тому існує і її двостороння границя при , яка також рівна е.

Наслідок 1.

(1.16)

і, зокрема, при

Дійсно, використовуючи неперервність логарифмічної функції, неперервність суперпозиції функцій і рівність (1.6), отримаємо:

Наслідок 2.


Реферати!

У нас ви зможете знайти і ознайомитися з рефератами на будь-яку тему.







Не знайшли потрібний реферат ?

Замовте написання реферату на потрібну Вам тему

Замовити реферат