Зворотний зв'язок

Суперпозиція ЛКАО і псевдопотенціалу для розрахунку енергетичної зонної структури монокристалів CdJ2

Дійсні орбіталі вільних атомів замінювалися певними локальними функціями слетерівського типу, котрі дуже подібні до дійсних іонних хвильових функцій, обчислених за першими принципами, хоча перші визначають дисторсію електронного вкладу. Підстановка одержаних у такий спосіб оптимізованих орбіталей дозволяла проводити числову оцінку з використанням техніки скорочення (стиснення) Гаусіана. Ми збудували ортогоналізовані Блохівські суми в такому вигляді:

Bq’a(k,r) = Bqa(k,r) + qa,lgBlg (k,r),(23)

де Blg(k,r) хвильові функції зон провідності, одержані методом ПП. Всі aqa,lg і Blg, обчислювалися відповідно до умов ортогональності попередньо обчислених нормованих хвильових функцій ПП.

Потенціал одноелектронного гамільтоніана виражався у вигляді суперпозиції атомних потенціалів Va(r). Атомний потенціал апроксимувався наступним рівнянням:

Va(r) = (- Zve/r) ci.exp(-air2) + Air2.exp(-bir2)] ,(24)

де всі пошукові коефіціенти ci, ai, Ai і bi обчислювалися за допомогою нелінійної інтерполяційної процедури. Використовуючи від восьми до дванадцяти гаусіанів, вдавалося забезпечити добрий хід радіальних функцій у наших обчисленнях. Усі матричні елементи гамільноніана розбивалися на серії з трицентрових інтегралів, котрі включали два гаусіани, центровані в точці розміщення атомів A і B, та атомний потенціал навколо точки C. Додавання здійснювалися шляхом розв’язування рівняння:

{ Hij(k) - E(k)Sij } = 0,(25)

для різних точок ЗБ. Матричні елементи слід обчислювати з більшою точністю, ніж це необхідно для обчислення власних значень через велику розмірність одержаного секулярного рівняння. Сумування велося за дванадцятьма сусідніми вузлами. Числове інтегрування здійснювалося в реальному просторі з урахуванням вкладу електрон-електронної взаємодії. Приклади інтегралів перекриття для s- і p-станів визначалося наступним рівнянням:

= icj[p/(ai + bj)]3/2exp{[-aibj/(ai + bj)](B - A)2}(26)

sa|pxb> = i cj {[p/(ai+bj)](B-A)2}exp{[-aibj/(ai+bj)](B-A)2}DBx (27)

Матричні елементи операторів Хартрі-Фока мають вигляд:

Fij = cicj [p/(ai + bj)]3/2exp{[-aibj/(ai + bj)](B - A)2 }. (28)

Точка D, що визначає розміщення центра мас атомів A і B, визначається так:

D = (aiA + bjB)/(ai + bj) ,(29)

Ефект екранування враховувався через модельні поправки Пердю-Зунгера і Капелі-Альдера [6] в такому вигляді:

mxc = - 0.6193/rS - 0.14392/(1+1.0529rS1/2 +0.3334rS).{1 +

+ [(0.5264rS1/2 +0.3334rS)/(3.(1+1.0529rS1/2 +0.3334rS))]},(30a)

для rS > 1

mxc = - 0.6193/rS +0.031 ln(rS) - 0.0583, (30b)

для rS < 1; де rS = [3/(4)]1/3 ;  – електронна густина.


Реферати!

У нас ви зможете знайти і ознайомитися з рефератами на будь-яку тему.







Не знайшли потрібний реферат ?

Замовте написання реферату на потрібну Вам тему

Замовити реферат