Зворотний зв'язок

Питання про взаємозв'язок математики і філософії

За допомогою математичних відношень Платон намагався охарактеризувати і деякі явища громадського життя, прикладом чого може служити трактування соціального відношення "рівність" у діалозі "Горгій" і в "Законах". Можна заключити, що Платон істотно спирався на математику при розробці основних поділів своєї філософії: у концепції "пізнання - пригадування", навчанні про сутність матеріального буття, про устрій космосу, у трактуванні соціальних явищ і т.д. Математика зіграла значну роль у конструктивному оформленні його філософської системи. Так у чому ж полягала його концепція математики?

Відповідно до Платона, математичні науки (арифметика, геометрія, астрономія і гармонія) даровані людині богами, що "зробили число, дали ідею часу і збудили потребу дослідження всесвітом". Споконвічне призначення математики в тому, щоб "очищався і пожвавлювався той орган душі людини, розстроєний і осліплений іншими справами", що "важливіше, чим тисяча очей, тому що ним одним споглядається істина". "Тільки ніхто не користується нею (математикою) правильно, як наукою, що приводить неодмінно до існуючого". "Неправильність" математики Платон бачив насамперед у її придатності для вирішення конкретних практичних задач. Не можна сказати, щоб він взагалі заперечив практичну придатність математики. Так, частина геометрії потрібна для "розташування таборів", "при всіх побудовах, як під час самих боїв, так і під час походів". Але, на думку Платона, "для таких речей ...достатня мала частина геометричних і арифметичних вирахувань, частина ж їх велика, що простирається далі, повинна ...сприяти найлегшому засвоєнню ідеї блага". Платон негативно відзивався про ті спроби використання механічних методів для рішення математичних задач, що мали місце в науці того часу. Його незадоволеність викликала також прийняте сучасниками розуміння природи математичних об'єктів. Розглядаючи ідеї своєї науки як відбиток реальних зв'язків дійсності, математики у своїх дослідженнях поряд з абстрактними логічними міркуваннями широко використовували почуттєві уяви, геометричні побудови. Платон усіляко намагається переконати, що об'єкти математики існують відособлено від реального світу, тому при їхньому дослідженні неправомірно удаватись до почуттєвої оцінки.

Таким чином, в історично сформованій системі математичних знань Платон виділяє тільки умоглядну, дедуктивно побудовану компоненту і закріплює за нею право називатися математикою. Історія математики містифікується, теоретичні поділи різко протипоставляться обчислювальному апарату, до межі звужується область додатка. У такому перекрученому виді деякі реальні сторони математичного пізнання і послужили одним з основ для побудови системи об'єктивного ідеалізму Платона. Адже сама по собі математика до ідеалізму взагалі не веде, і з метою побудови ідеалістичних систем її потрібно істотно деформувати.

Питання про вплив, здійснений Платоном на розвиток математики, досить важке. Тривалий час панувало переконання, що внесок Платона в математику був значний. Проте більш глибокий аналіз призвів до зміни цієї оцінки. Так, О.Нейгебауер пише: "Його власний прямий внесок у математичні знання, очевидно, був рівним нулю... Винятково елементарний характер прикладів математичних міркувань, які наводяться Платоном і Аристотелем, не підтверджує гіпотези про те, що Увдокс або Тєетет чому-небудь навчилися в Платона... Його порада астрономам замінити спостереження спекуляцією міг би зруйнувати один із найбільше значних внесків греків у точні науки". Така аргументація цілком переконлива; можна також погодитися і з тим, що ідеалістична філософія Платона в цілому зіграла негативну роль у розвитку математики. Проте не варто забувати про складний характер цього впливу.Платонові належить розробка деяких важливих методологічних проблем математичного пізнання: аксіоматична побудова математики, дослідження відношень між математичними методами і діалектикою, аналіз основних форм математичного знання. Так, процес доказу необхідно зв'язує набір доведених положень у систему, в основі якої лежать деякі недовідні положення. Той факт, що початку математичних наук "суть припущення", може викликати сумнів в істинності всіх наступних побудов. Платон вважав такий сумнів необгрунтованим. Відповідно до його пояснення, хоча самі математичні науки, "користуючи припущеннями, лишають їх у нерухомості і не можуть дати для них підстави", припущення знаходять підстави за допомогою діалектики. Платон висловив і ряд інших положень, що виявилися плідними для розвитку математики. Так, у діалозі "Бенкет" висувається поняття межі; ідея виступає тут як межа становлення речі.

Критика, якій піддавалися методологія і світоглядна система Платона з боку математиків, при усій своїй важливості не торкалася самої основи ідеалістичної концепції. Для заміни розробленої Платоном методології математики більш продуктивною системою потрібно було піддати критичному розборові його навчання про ідеї, основні поділи його філософії і як слідство цього – його погляд на математику. Ця місія випала на долю учня Платона - Аристотеля.

Система філософії математики Аристотеля

К.Маркс назвав Аристотеля (384-322 р. до н.е.) "найбільшим філософом стародавності". Основні питання філософії, логіки, психології, природознавства, техніки, політики, етики й естетики, поставлені в науці Древньої Греції, одержали в Аристотеля повне і всебічне освітлення. У математиці він, очевидно, не проводив конкретних досліджень, проте найважливіші сторони математичного пізнання були піддані їм глибокому філософському аналізу, що послужило методологічною основою діяльності багатьох поколінь математиків.


Реферати!

У нас ви зможете знайти і ознайомитися з рефератами на будь-яку тему.







Не знайшли потрібний реферат ?

Замовте написання реферату на потрібну Вам тему

Замовити реферат