Зворотний зв'язок

Питання про взаємозв'язок математики і філософії

Греки вводять процес обгрунтування як необхідний компонент математичної дійсності, доказовість дійсно являється відмітною рисою їхньої математики. Технікою доказу ранньої грецької математики, як у геометрії, так і в арифметиці спочатку була проста спроба надання наочності. Конкретними різновидами такого доказу в арифметиці був доказ за допомогою камінчиків, у геометрії - шляхом накладення. Але сам факт наявності доказу говорить про те, що математичні знання сприймаються не догматично, а в процесі міркування. Це, у свою чергу, виявляє критичний склад розуму, впевненість (може бути, не завжди усвідомлену), що міркуванням можна встановити правильність або хибність розглянутого положення, впевненість у силі людського розуму.

Греки на протязі одного-двох сторіччя зуміли опанувати математичною спадщиною попередників, накопиченою на протязі тисячоріч, що свідчить про інтенсивність, динамізм їхнього математичного пізнання. Якісна відмінність досліджень Фалеса і його послідовників від догрецької математики виявляється не стільки в конкретнім змісті досліджуваної залежності, скільки в новому засобі математичного мислення. Вихідний матеріал греки взяли в попередників, але засіб засвоєння і використання цього матеріалу був новий. Відмінними рисами їхнього математичного пізнання являється раціоналізм, критицизм, динамізм.

Ці ж риси характерні і для філософських досліджень мілетської школи. Філософська концепція і сукупність математичних положень формується за допомогою однорідного по своїх загальних характеристиках розумового процесу, якісно відмінного від мислення попередньої епохи. Як же сформувався цей новий засіб сприйняття дійсності? Звідки бере свій початок прагнення до наукового знання?

Ряд дослідників зазначає відзначені вище характеристики розумового процесу "уродженими особливостями грецького духу". Проте це посилання нічого не пояснює, тому що незрозуміло, чому той же "грецький дух" після закінчення епохи еллінізму втрачає свої якості. Можна спробувати виявити причини такого світорозуміння в соціально-економічній сфері.

Іонія, де проходила діяльність мілетської школи, була достатньо розвиненою в економічному відношенні областю. Тому саме вона серед інших вступила на шлях повалення первісно-общинного ладу і формування рабовласницьких відношень. У VIII-VI ст. до н.е. земля все більше зосереджувалася в руках крупної родової знаті. Розвиток ремісничого виробництва і торгівлі ще в більшій мірі прискорював процес соціально-майнового розшарування. Відношення між аристократією і демосом стають напруженими; згодом ця напруженість переростає у відкриту боротьбу за владу. Калейдоскоп подій у внутрішньому житті, не менш мінлива зовнішня обстановка формують динамізм, гостроту суспільної думки.

Напруженість у політичній і економічній сферах призводить до сутичок в області релігії, оскільки демос, ще не сумніваючись у тому, що релігійні і світські установлення вічні, тому що дані богами, вимагає, щоб вони були записані і стали загальнодоступними, тому що правителі спотворюють божественну волю і тлумачать її по-своєму. Проте неважко зрозуміти, що систематичний виклад релігійних і міфологічних уявлень (спроба такого викладу була зроблена Гесіодом) не могло не завдати серйозного удару релігії. При перевірці релігійних вигадувань логікою перші, безсумнівно, показалися б конгломератом дурниць.

Таким чином, матеріалістичний світогляд Фалеса і його послідовників не є якимось загадковим, не від світу цього породженням "грецького духу". Воно є продуктом цілком визначених соціально-економічних умов і виражає інтереси історично-конкретних соціальних сил, насамперед торгово-ремісничих прошарків товариства" - пише О.И.Кедровський.На підставі всього перерахованого вище ще не можна з великою впевненістю стверджувати, що саме вплив світогляду виявився вирішальним чинником для виникнення доказу; не виключено ж, що це відбулося в силу інших причин: потреб виробництва, запитів елементів природознавства, суб'єктивних спонукань дослідників. Проте можна переконатися, що кожна з цих причин не змінила принципово свого характеру в порівнянні з догрецькою епохою і безпосередньо не призводить до перетворення математики в доказову науку. Наприклад, для задоволення потреб техніки було цілком достатньо практичної науки древнього Сходу, у справедливості положень якої можна було переконатися емпірично. Сам процес виявлення цих положень показав, що вони дають достатню для практичних потреб точність.

Можна вважати одним із спонукальних мотивів виникнення доказу необхідність осмислення й узагальнення результатів попередників. Проте і цьому чиннику не належить вирішальна роль, тому що, наприклад, існують теорії, які сприймаються нами як очевидні, але отримали суворе обгрунтування в античній математиці (наприклад, теорія подільності на 2).

Поява потреби доказу в грецькій математиці одержує задовільне пояснення, якщо врахувати взаємодію світогляду на розвиток математики. У цьому відношенні греки істотно відрізняються від своїх попередників. У їх філософських і математичних дослідженнях виявляються віра в силу людського розуму, критичне відношення до досягнень попередників, динамізм мислення. У греків вплив світогляду перетворився зі стримуючого чинника математичного пізнання в стимулюючий, у діючу силу прогресу математики.


Реферати!

У нас ви зможете знайти і ознайомитися з рефератами на будь-яку тему.







Не знайшли потрібний реферат ?

Замовте написання реферату на потрібну Вам тему

Замовити реферат