Зворотний зв'язок

Про графічний спосіб розв’язання математичних задач

Основою для графічного розв’язання арифметичних задач є те, що «на безлічі відрізків прямої, як і на безлічі прямокутників з рівними сторонами, визначені операції додавання і множення на невід’ємне число, тобто операції, подібні з арифметичними діями додавання і множення невід’мних чисел».

До графічного розв’язання задач учні приходять не відразу. У I класі діти учаться графічно за допомогою прямокутних смужок і відрізків зображувати числа, їхню суму і різницю, умову задачі.

Деякі з таких вправ описані в ряді статей, опублікованих у журналі «Початкова школа». Множення в II класі, є власне кажучи окремий випадок суми декількох додатків що складаються, тільки доданки в цьому випадку однакові. Зміст множення тому близько підходить до змісту додавання. При підготовці до вивчення множення учням для виконання пропонувалися вправи, де поряд з розташуванням суми неоднакових доданків давалися і завдання на розташування суми рівних доданків.

Зазначалося, що при додаванні рівних чисел смужки, що зображують геометричні образи доданків, зручніше зображувати не в один ряд, а стовпчиком.

Так, поряд з такою формою зображення пропонувалася й інша. З'ясовувалося, що множене вказує на число кліток у горизонтальному ряді, а множник — число таких рядів.

Набуті в такий спосіб уміння використовувалися при розв’язанні перших задач на множення — задач на розкриття конкретного змісту множення. Розглядалася, наприклад, задача: «Хлопчик обвів 3 ряди кліток, по 4 клітки в кожнім ряді. Скільки усього кліток обвів хлопчик?» Аналізуючи умову задачі, учні одержували таке креслення.

Для розкриття конкретного змісту ділення розглядалися, наприклад, такі задачі:

1. Задача на ділення числа на рівні частини: «Учню треба обвести 6 клітинок у двох рівних рядах. По скільки клітинок треба обвести у кожному ряді?» Міркування. Обведемо по одній клітинці у кожному ряді, всього 2 клітинки, потім ще по одній клітинці у кожному ряді, всього 4 клітинки, і, нарешті, ще по одній клітинці в кожному ряді, всього 6 клітинок. У результаті виходить креслення, на якому показується ділене, дільник, частка.

2. Задача на ділення на вміщення числа по змісту: «Учню треба обвести 6 клітинок, по 2 клітинки в кожнім ряді. Скільки вийде рядів?» Міркування. Обведемо 2 клітинки, у першому ряді всього 2 клітинки; обведемо ще 2 клітинки, всього 4 клітинки в двох рядах; обведемо ще 2 клітинки, всього 6 клітинок у трьох рядах. У результаті виходить креслення.

За допомогою графічного зображення умов розглянутих вище задач легко показати зв'язок двох видів ділення одного на інший і зв'язок їх із множенням. Оскільки узагальнення двох видів задач на ділення у підручнику розглядається тоді, коли учні вже знайомі із знаходженням невідомого множника, то записувати розв’язання задач обох видів корисно у виді виразів із змінною. Так, розв’язання розглянутих вище задач на розкриття конкретного змісту важливо записати:1) х – 2 = 6 2) 2 – х = 6

х =3 х = 3

Після того як учні навчаться графічно зображувати суму, різницю, добуток і частку двох чисел, можна приступити до графічного розв’язання окремих видів задач, занесених до програми II класу.

Задачі в дві дії виду: а x b ± с, а ± b x с, (а + b) x с, (а ± b) : с.

Задачі розглянутого виду містять у собі просту задачу на дії першого ступеня і просту задачу на множення і ділення.

Розглянемо, наприклад, задачу (виду а x b + с): «У школу для ремонту першого дня привезли колоди на трьох машинах, по 10 колод у кожній машині. В другий день привезли 18 колод. Скільки колод привезли за два дні?»


Реферати!

У нас ви зможете знайти і ознайомитися з рефератами на будь-яку тему.







Не знайшли потрібний реферат ?

Замовте написання реферату на потрібну Вам тему

Замовити реферат