Теореми про диференціальні функції
.
& Приклад. Знайти
IV. Невизначеності виду за допомогою перетворень зводяться до невизначеності виду .
Знайти при або ,
& Приклад. Знайти
.
& Приклад. Знайти
.
& Приклад. Знайти
.
L Зауваження. Часто границі обчислюють, комбінуючи різні методи - застосування шкали еквівалентностей та правила Лопіталя.
- 2 -
ФОРМУЛА ТЕЙЛОРАРозглянемо одну з основних формул математичного аналізу, так звану формулу Тейлора, яка широко застосовується як в самому аналізі, так і в суміжних дисциплінах. Зупинимося лише на трьох застосуваннях.
В пункті про нескінченно великі величини ми можемо побачити, що заміна приросту функції її диференціалом дає змогу утворювати різні наближені формули. Виявляється, що ці формули можна уточнити, якщо застосувати диференціали вищих порядків: про це і йдеться у формулі Тейлора.
Формула Тейлора дає змогу розробити простий аналітичний апарат для обчислення значень функції у = f(х), які відповідають заданим значенням незалежної змінної х. Зрозуміло, що в тих випадках, коли функція задається формулою виду , значення обчислюються лише за допомогою чотирьох арифметичних дій. Але як знайти, наприклад, значення функції ? Очевидно, цю задачу найпростіше можна „розв'язати” за допомогою калькулятора. Але ж калькулятор дає лише відповідь. А питання про те, які він при цьому виконує дії, залишається відкритим. Формула Тейлора і вказує, які арифметичні дії потрібно виконати над х, щоб одержати sin x.
Іншими словами, формула Тейлора дає змогу зобразити дану функцію многочленом, що зручно для складання програм і обчислень цієї функції на ЕОМ.
Ще одне практичне застосування цієї формули пов'язане з обробкою числових експериментальних даних. Якщо в результаті експерименту одержимо масив значень (хі ; уі), то спочатку будують графік залежності у =,а потім цю залежність описують аналітично, причому, як правило, у вигляді многочлена.
Обґрунтування можливості представляти функцію многочленом дає формула Тейлора.
Теорема. Нехай функція має в точці х0 і в деякому її околі похідні до (п+1)-го порядку включно, і нехай х - довільне значення аргументу із вказаного околу (х ¹ х0). Тоді між точками х0 і х знайдеться така точка с, що справедлива формула
(1)