Зворотний зв'язок

Теореми про диференціальні функції

Згідно з правилом Лопіталя маємо:

Отже, границя даної функції не існує, оскільки не існує .

Але

L Зауваження. Правило Лопіталя є ефективним методом розкриття невизначеностей. Проте застосування його не завжди дає змогу спростити здобутий вираз і знайти шуканий результат.

& Приклад. Знайти .

Якщо застосувати правило Лопіталя вдруге, то функція під знаком границі набере початкового вигляду. Таким чином, за цим правилом не вдається розкрити невизначеність.

Але

ВИСНОВОК:

Невизначеності виду можна розкривати за правилом Лопіталя (1),(4),(8).

Застосування правила Лопіталя для розкриття невизначеностей виду

І. Невизначеність виду

за допомогою перетворень зводиться до невизначеностей або , а далі застосовується правило Лопіталя.

Знайти границю , якщо .

& Приклад. Знайти: .

.

& Приклад. Знайти .

.

При х ® + ¥ степенева функція зростає повільніше, ніж будь-яка інша показникова функція.

ІІ. Невизначеність

за допомогою перетворень зводиться до невизначеності виду

Знайти , якщо

& Приклад.

ІІІ. Невизначеність 1¥ - за допомогою перетворень зводиться до .

Знайти .


Реферати!

У нас ви зможете знайти і ознайомитися з рефератами на будь-яку тему.







Не знайшли потрібний реферат ?

Замовте написання реферату на потрібну Вам тему

Замовити реферат