Зворотний зв'язок

Диференціальні рівняння. Задача Коші

ПЛАН

1. Поняття про диференціальні рівняння. Рівняння з розділеними

змінними.

2. Лінійні диференціальні рівняння.

3. Задача Коші. Застосування диференціальних рівнянь в економіці.

1. Поняття про диференціальні рівняння. Рівняння з розділеними

змінними

Ряд задач економіки та упраління, що розгортаються в часі, описуються диференціальними рівняннями.

Означення. Звичайним диференціальним рівнянням називається рівняння, у яке входять незалежна змінна, функція від цієї змінної та похідні різних порядків:

F(x,y,y,y,…)=0

Найвищий порядок похідної при цьому називається порядком рівняння.

Приклади.

1. Диференціальне рівняння другого порядку y+2y-3y=x2+1 .

2. Диференціальне рівняння третього порядку y=cos(x).

Означення. Розв’язком диференціального рівняння називають функцію, яка в разі підстановки у рівняння перетворює його у тотожність.

Приклади.

1. Розв’язками диференціального рівняня першого порядку y=3x2 є функції y=x3, y=x3+10, y=x3-3.5,…

Отже, загальний розв’язок цього рівняння має вигляд y=x3+C , де C - довільна стала.

2. Загальним розв’язком рівняння другого порядку y=sin(x) є сім’я функцій (кривих) y= -sin(x)+C1x+C2, де C1 та C2 - довільні сталі. Частковими ж розв’язками є, наприклад, функції y= -sin(x)+10, y= sin(x)+2x+1 тощо.

Крім звичайних диференціальних рівнянь, розглядають також рівняння з частинними похідними (шукана функція залежить від декількох змінних), наприклад:

ux(x,y)+uy(x,y)=2u(x,y)+x+y

Означення. Звичайним диференціальним рівнянням першого порядку називається рівняння, у яке входить змінна x, функція y та перша похідна y(x):

F(x,y,y)=0


Реферати!

У нас ви зможете знайти і ознайомитися з рефератами на будь-яку тему.







Не знайшли потрібний реферат ?

Замовте написання реферату на потрібну Вам тему

Замовити реферат