Диференціальні рівняння. Задача Коші
ПЛАН
1. Поняття про диференціальні рівняння. Рівняння з розділеними
змінними.
2. Лінійні диференціальні рівняння.
3. Задача Коші. Застосування диференціальних рівнянь в економіці.
1. Поняття про диференціальні рівняння. Рівняння з розділеними
змінними
Ряд задач економіки та упраління, що розгортаються в часі, описуються диференціальними рівняннями.
Означення. Звичайним диференціальним рівнянням називається рівняння, у яке входять незалежна змінна, функція від цієї змінної та похідні різних порядків:
F(x,y,y,y,…)=0
Найвищий порядок похідної при цьому називається порядком рівняння.
Приклади.
1. Диференціальне рівняння другого порядку y+2y-3y=x2+1 .
2. Диференціальне рівняння третього порядку y=cos(x).
Означення. Розв’язком диференціального рівняння називають функцію, яка в разі підстановки у рівняння перетворює його у тотожність.
Приклади.
1. Розв’язками диференціального рівняня першого порядку y=3x2 є функції y=x3, y=x3+10, y=x3-3.5,…
Отже, загальний розв’язок цього рівняння має вигляд y=x3+C , де C - довільна стала.
2. Загальним розв’язком рівняння другого порядку y=sin(x) є сім’я функцій (кривих) y= -sin(x)+C1x+C2, де C1 та C2 - довільні сталі. Частковими ж розв’язками є, наприклад, функції y= -sin(x)+10, y= sin(x)+2x+1 тощо.
Крім звичайних диференціальних рівнянь, розглядають також рівняння з частинними похідними (шукана функція залежить від декількох змінних), наприклад:
ux(x,y)+uy(x,y)=2u(x,y)+x+y
Означення. Звичайним диференціальним рівнянням першого порядку називається рівняння, у яке входить змінна x, функція y та перша похідна y(x):
F(x,y,y)=0