Зворотний зв'язок

Інтерполяція функції

(6)

Зробимо позначення

. (7)

Тоді (6) набуває вигляду

.А оскільки , то

Та як , то в кінцевому результаті маємо:

. (8)

З іншого боку (7) є двовимірним інтерполяційним ланцюговим дробом. Він має n поверхів і його коефіцієнти, за припущенням, визначаються згідно з формулами .

Тут

при .

З останньої формули та з формули (8) випливає, що , а тоді і . Отже формула (5) має місце і при .

Твердження доведено.

§6. Результати і висновки.

В цій роботі були розглянуті деякі цікаві властивості двовимірних інтерполяційних агрегатів. Зокрема були доведені твердження 1 – 3 (див. § 5), що дають відповіді на питання про кількість коефіцієнтів двовимірного інтерполяційного ланцюгового дробу, про степінь многочленів чисельника та знаменника цього дробу по змінним х та у а також вказують зручний спосіб обчислення його (дробу) коефіцієнтів.

Для проведення обчислювальних експериментів були складені дві програми, які реалізують алгоритми двовимірної інтерполяції многочленами і дробами. Саме дві, оскільки при одних і тих же початкових умовах (функція, область і набір вузлів) побудова двовимірних інтерполяційних ланцюгових дробів є значно менш ресурсоємним алгоритмом, і тому для дробів відкривається можливість перевірити точність при таких наборах інтерполяційних вузлів із заданої області, які містять в декілька разів (а то і в десятки разів) більше точок, ніж для многочленів. Але для порівняння результатів ці програми були об’єднані в одну, текст якої подано в додатку.

В ході обчислювальних експериментів було відмічено цікаві результати стосовно точності двовимірних інтерполяційних агрегатів, а саме : якщо при одновимірній інтерполяції із зростанням кількості точок розбиття проміжку похибка наближаючого агрегату прямує до нуля, то у випадку двох змінних можна спостерігати своєрідне “коливання” точності то в кращу, то в гіршу сторону. Найбільш яскраво це проявлялося при інтерполяції дробами і многочленами з вибором рівномірно розташованих на проміжках вузлах, але коли за вузли бралися корені многочлена Чебишева, то у многочленів збіжність значно покращувалася. Хоч такий вибір вузлів і не мав такого ж позитивного впливу на збіжність двовимірних інтерполяційних ланцюгових дробів.

Нижче подано добірку результатів найбільш характерних обчислювальних експериментів. Вузли рівномірно розподілені по проміжках.

ДробиМногочлени

NxNyАбсолютна похибкаВідносна похибкаАбсолютна похибкаВідносна похибка


Реферати!

У нас ви зможете знайти і ознайомитися з рефератами на будь-яку тему.







Не знайшли потрібний реферат ?

Замовте написання реферату на потрібну Вам тему

Замовити реферат