Зворотний зв'язок

Інтерполяція функції

Якщо послідовні поділені різниці функції утворюються по , то символом будемо позначати n-ту частинну різницю функції по змінній ; якщо ж різниці утворюються по y, то через будемо позначати m-ту частинну різницю функції по змінній . Так, наприклад, перша поділена різниця функції по змінній х має вигляд (у вважається сталою):

а різниця (х вважається сталою)

являє собою першу поділену різницю функції по у. Зробимо важливе зауваження щодо символів , , і . Якщо розглянути, наприклад, символ , то можемо відмітити, що цим символом позначається значення функції в точці площини Х0У, а не перша поділена різниця функції , як це прийнято позначати у випадку одновимірної інтерполяції. Такий же зміст мають і інші символи. Для поділеної різниці (n+m)-го порядку відносно обох змінних х (для значень х, рівних ) та у (для значень у, рівних ) ми будемо використовувати позначення:

Поділені різниці функції від двох змінних можуть бути отримані за допомогою формули для різниць функції від одної змінної. Власне ми можемо утворити певну суперпозицію двох таких формул:

тоді

Тут - значення в точці .

Із цих формул видно, що поділені різниці функції по змінних х та у є симетричними функціями параметрів таким чином, що вони не змінюються при яких завгодно їх перестановках. Наприклад:

.

§3. Інтерполяційний многочлен у формі Ньютона для функції двох змінних.

Згідно загальної інтерполяційної формули Ньютона для функції однієї змінної маємо:

Але по тій самій формулі Ньютона ми можемо записати:

Таким чином отримуємо інтерполяційну формулу для , яка залежить від поділених різниць:

(1)

де

Але так як

,

то залишковий член може бути переписаний у вигляді

(2)

Таким чином для функції, яка залежить від двох змінних, формула Ньютона приймає вигляд (1), причому залишковий член може бути представлений у вигляді (2).

За аналогією з одновимірним випадком, можна спростити залишковий член за допомогою значень похідних в деякій середній точці. Тоді можемо записати:

,


Реферати!

У нас ви зможете знайти і ознайомитися з рефератами на будь-яку тему.







Не знайшли потрібний реферат ?

Замовте написання реферату на потрібну Вам тему

Замовити реферат