Зворотний зв'язок

Похідна

1.знаходять критичні точки в інтервалі (a;b) (точки, в яких похідна дорівнює нулю або не існує), обчислюють значення функції в цих точках;

2.знаходять значення функції на кінцях відрізка, тобто ;

3.серед усіх значень вибирають найбільше і найменше значення.

У випадку, коли функція монотонна на відрізку [a;b], то найбільшого і найменшого значення вона досягає на кінцях відрізка. У цьому випадку обмежуємось обчисленням значень .

По-іншому складається ситуація, якщо необхідно знайти найбільше та найменше значення функції, неперервної в інтервалі (a;b).

Зрозуміло, що функція у цьому випадку не може досягати найбільшого і найменшого значення на кінцях інтервалу. Наприклад, функція в інтервалі (3;6) не має ні найбільшого, ні найменшого значення у внутрішніх точках інтервалу. У цьому випадку чинять так:

1. знаходять критичні точки, що належать цьому інтервалу, і обчислюють значення функції в цих точках;

2. знаходять ліву та праву границі відповідно в точках а і б , тобто . Якщо ці границі існують, то їх порівнюють із значеннями функції в критичних точках. Якщо виявиться, що значення в критичних точках більші(менші) за знайдені границі, то це і буде найбільшим(найменшим) значенням функції на інтервалі.

Приклади.

Приклад 1. Знайти найбільше та найменше значення функції на відрізку [a;b]

Розв’язання. На даному відрізку функція визначена і неперервна, диференційована в інтервалі(-2;2). Знайдемо похідну, критичні точки:

х=0

знайдемо значення функції в критичній точці і на кінцях відрізка:

Отже,

.

Приклад 2. Знайти найбільше та найменше значення функції на відрізку [a;b]

Розв’язання. Функція визначена і неперервна на відрізку , диференційна в інтервалі (-1;1). Тому вона набуває на даному відрізку найбільшого і найменшого значення. Знайдемо критичні точки даної функції. Для цього знайдемо похідну

і прирівняємо її до нуля:

х4+8х=0; х=0; х=-2.

Отже, на інтервалі (-1;1)функція має лише одну критичну точку х=0. знайдемо значення функції в цій точці .

Обчислимо значення функції на кінцях відрізка

, .

Отже,


Реферати!

У нас ви зможете знайти і ознайомитися з рефератами на будь-яку тему.







Не знайшли потрібний реферат ?

Замовте написання реферату на потрібну Вам тему

Замовити реферат