Похідна
3)Функція не є періодичною. Це випливає навіть з того, що вона невизначена лише у двох точках.
4)Графік функції перетинає вісь ординат у точці (0;1). Нулі функції відсутні. Отже, графік функції не перетинає вісь абсцис.
5)Дослідимо функцію на монотонність та критичні точки. Для цього знайдемо похідну
;
х=0–критична точка.
Для . Отже, на цих проміжках функція зростає. Оскільки функція парна, то на проміжках вона спадає. Тоді точка х=0 є точкою локального максимуму. Знайдемо його значення
.
6)Дослідимо функцію на опуклість та точки перегину:
.
На проміжках . Отже, графік функції опуклий вниз. На проміжку , а тому графік функції опуклий вгору.
Точки перегину відсутні.
7)Оскільки , то пряма у=1 є горизонтальною асимптотою для графіка функції.
Дослідимо поведінку функції біля точок х=2, х=-2:
, .
Отже, в точці х=2 функція має розрив другого роду, а пряма х=2 є вертикальною асимптотою. Враховуючи парність функції, робимо висновки, що пряма х=-2 також є вертикальною асимптотою.
.
Приклад 2. Побудувати графік функції:
Розв’язання.
1.Область визначення функції f :
.
2.Функція не належить ні до парних, ні до непарних. Це безпосередньо випливає з того, що область її визначення несиметрична відносно нуля.
3.Період функції . Тому дослідження функції достатньо спочатку провести на проміжку . Крім того, враховуючи, що , робимо висновок про симетричність графіка відносно прямої на проміжку . Тому можна обмежитися дослідженням функції на проміжку .
4.Дослідимо функцію на монотонність та критичні точки на проміжку . Для цього знайдемо її похідну
.