Зворотний зв'язок

Теорія металів Друде

Найбільш важлива область застосування знайденого результату - дослідження розповсюдження електро – магнітного випромінювання в металі.

Якщо електричне поле не змінюється істотним чином на відстанях, які порівняно з довжиною вільного пробігу електрона великі, ми маємо право при обчисленні густини струму j(r,t) в точці r вважати, що поле у всьому просторі має таку ж величину E(r,t), як і в точці r . звідси і отримаємо результат

j(r,ω) =σ(ω) E(r,ω) (30)

він правильний, якщо довжина хвилі λ поля велика порівняно з довжиною вільного пробігу електрона l . В металах ця умова зазвичай виконується для видимого світла (довжина хвилі 103-104 А ). Коли вона порушується , то застосовуються інші складніші теорії.

Вважаючи, що довжина хвилі велика порівняно з довжиною вільного пробігу, можна поступити наступним чином. Якщо ми маємо густину струму j , то рівняння Максвела можна записати у вигляді :

▼·E=0; ▼·H=0; ▼x E=(-1/c)(∂H/∂t); ▼x H=4πj/c+(1/c)(∂E/∂t) (31)

Будемо шукати розв’язок , який залежить від часу як e-iωt . зауважимо, що в металі можна виразити j через Е з допомогою формули (1.28), знаходимо:

▼x(▼x E)=- ▼ 2E=(iω/c) ▼ x H==(iω/c)(4πσE/c- iωE/c) (32)

або інакше :

- ▼2E=(ω2/c2)(1+4πiσ/ ω) E (33)

Рівняння (1.33) має вигляд звичайного хвильового рівняння

- ▼2E=(ω2/c2)ε(ω)E (34)

з комплексною діелектричною проникністю

ε(ω)=1+4πiσ/ ω (35)

Якщо частота достатньо велика, так що виконується умова:

ωτ≥1 (36)

то в першому наближенні , виходячи із (35) і (29), отримаємо

ε(ω)=1- ω2p / ω2 (37)

де величина ωp, називається плазмовою частотою, і обчислюється :

ω2p =4πne2/m (38)

Якщо ε - дійсна від’ємна величина ( ω>ωp) , то рівняння (34) має лише такі розв’язки , що в цьому випадку випромінювання не може поширюватись. Якщо ε - додатна величина (ω<ωp) , то розв’язок рівняння (34) означає, що випромінювання може поширюватись і метал повинен бути прозорим. Цей висновок справедливий , якщо поблизу частоти ω=ωp виконується зроблене нами припущення (1.36). Виражаючи τ через питомий опір з допомогою формули:


Реферати!

У нас ви зможете знайти і ознайомитися з рефератами на будь-яку тему.







Не знайшли потрібний реферат ?

Замовте написання реферату на потрібну Вам тему

Замовити реферат