Зворотний зв'язок

Диференціальні рівняння першого порядку, не розвязані відносно похідної

Тоді - загальний інтеграл.

або . Цей загальний інтеграл є накладенням сімейств двох (мал. 5.1).

Розв'язок задачі Коші для Д.Р. (5.9) в кожній точці площіни являється єдиним. В точці ми маємо два напрямки поля:; І через цю точку проходить два

, якщо (5.11)

і , якщо .

Розв'язки (10),(11) - частинні розв'язки. Особливих розв'язків немає.

2. Знаходження кривих, підозрілих на особливий розв'язок.

Припустимо, що Д.Р. (5.1) представлено в формі (5.3). При досліджені на особливий розв'язок рівнянь виду (5.3) ми прийшли до висновку, що ці розв'язки можливі на тих кривих, на яких являється необмеженою. Але в переході від Д.Р. (5.1) до рівнянь (5.3) є недоцільність при визначені особливих розв'язків, так як .

Дійсно, припустимо, що _____ похідні , тоді

, звідки (5.12).

Припустимо, що , тоді буде необмеженою при умові

(5.13)

Таким чином, криві, підозрілі на особливий розв'язок будуть визначатися з системи

(5.14)

Розв'язок системи (5.14)

=0 (5.15)

дискримінантна крива. Якщо вона задовільняє Д.Р. (5.1) і в кожній точці порушується єдність, то це буде особливий розв'язок.

Приклад 5.2.

(5.16)

, (5.17)

Співвідношення (5ю17) - дискримінантна крива рівняння (5.16). А на ній ми маємо не два а один напрямок поля . В той же час - через неї може проходити не одна .

5.3. Загальний метод введення параметра.

Розглянемо Д.Р. (5.1). Припустимо, що воно допускає параметризацію


Реферати!

У нас ви зможете знайти і ознайомитися з рефератами на будь-яку тему.







Не знайшли потрібний реферат ?

Замовте написання реферату на потрібну Вам тему

Замовити реферат