Диференціальні рівняння першого порядку, не розвязані відносно похідної
Тоді - загальний інтеграл.
або . Цей загальний інтеграл є накладенням сімейств двох (мал. 5.1).
Розв'язок задачі Коші для Д.Р. (5.9) в кожній точці площіни являється єдиним. В точці ми маємо два напрямки поля:; І через цю точку проходить два
, якщо (5.11)
і , якщо .
Розв'язки (10),(11) - частинні розв'язки. Особливих розв'язків немає.
2. Знаходження кривих, підозрілих на особливий розв'язок.
Припустимо, що Д.Р. (5.1) представлено в формі (5.3). При досліджені на особливий розв'язок рівнянь виду (5.3) ми прийшли до висновку, що ці розв'язки можливі на тих кривих, на яких являється необмеженою. Але в переході від Д.Р. (5.1) до рівнянь (5.3) є недоцільність при визначені особливих розв'язків, так як .
Дійсно, припустимо, що _____ похідні , тоді
, звідки (5.12).
Припустимо, що , тоді буде необмеженою при умові
(5.13)
Таким чином, криві, підозрілі на особливий розв'язок будуть визначатися з системи
(5.14)
Розв'язок системи (5.14)
=0 (5.15)
дискримінантна крива. Якщо вона задовільняє Д.Р. (5.1) і в кожній точці порушується єдність, то це буде особливий розв'язок.
Приклад 5.2.
(5.16)
, (5.17)
Співвідношення (5ю17) - дискримінантна крива рівняння (5.16). А на ній ми маємо не два а один напрямок поля . В той же час - через неї може проходити не одна .
5.3. Загальний метод введення параметра.
Розглянемо Д.Р. (5.1). Припустимо, що воно допускає параметризацію