Зворотний зв'язок

Достатні ознаки збіжності рядів з додатніми членами, ознаки порівняння, Даламбера, радикальна та інтегральна ознаки Коші

Запишемо нерівність (13.8) для різних значень починаючи з номера :

. (13.9)

Розглянемо тепер два ряди:

,

.

Другий ряд є геометричною прогресією з додатним знаменником , тому він збігається. Члени цього ряду, починаючи з , менші за члени першого ряду. За першою теоремою порівняння рядів ряд - збігається, а це і є ряд (13.4).

2) Нехай Тоді з рівності (13.7) випливає (при ) , що, починаючи з деякого номера , буде виконуватися нерівність

,

або Але це означає, що члени ряду (13.4) зростають, починаючи з номера , а тому загальний член ряду не прямує до нуля. Значить, ряд розбігається.

Зауваження 1. Ряд (13.4) буде розбігатися і в тому випадку, коли Це випливає з того, що починаючи з деякого номера , буде виконуватися нерівність , або .

Зауваження 2. Якщо , то ознака Даламбера не дає можливості встановити, збігається чи розбігається даний ряд. В одному випадку такий ряд може збігатися, а в іншому - розбігатися. Для вирішення питання про збіжність таких рядів необхідно застосувати іншу ознаку.

Зауваження 3. Якщо , але відношення для всіх номерів , починаючи з деякого, більше за одиницю, то такий ряд розбігається.

Це випливає з того, що при буде виконуватися нерівність , і загальний член не прямує до нуля при

Приклад 1. Дослідити збіжність ряду

.

Р о з в ' я з о к. Використаємо ознаку Даламбера : ,

і

, тому ряд розбігається.

Приклад 2. Дослідити збіжність ряду .Р о з в ' я з о к. Використовуючи ознаку Даламбера, одержимо

<1; отже, даний ряд збігається.

13.5. Радикальна ознака Коші

Теорема. Якщо для ряду з додатними членами (13.4) величина

, (13.10)


Реферати!

У нас ви зможете знайти і ознайомитися з рефератами на будь-яку тему.







Не знайшли потрібний реферат ?

Замовте написання реферату на потрібну Вам тему

Замовити реферат