Достатні ознаки збіжності рядів з додатніми членами, ознаки порівняння, Даламбера, радикальна та інтегральна ознаки Коші
Достатні ознаки збіжності рядів з додатніми членами, ознаки порівняння, Даламбера, радикальна та інтегральна ознаки Коші
План
Ознаки порівняння рядів з додатними членами
Ознака Даламбера
Радикальна ознака Коші
Інтегральна ознака Коші
13.3. Ознаки порівняння рядів з додатними членами
Збіжність чи розбіжність знакододатного ряду часто встановлюється шляхом порівняння його з іншим рядом, наперед відомо збіжним або розбіжним. В основі такого порівняння лежать наступні теореми.
Нехай задані два ряди з додатними членами
(13.4)
(13.5)
Теорема.1 Якщо члени ряду (13.4) не більші відповідних членів ряду (13.5), тобто , то із збіжності ряду (13.5) випливає збіжність ряду (13.4), а із розбіжності ряду (13.4) випливає розбіжність ряду (13.5).
Д о в е д е н н я. 1) Нехай ряд (13.5) - збігається. Позначимо частинні суми рядів (13.4) і (13.5) через і . Оскільки
,
то, очевидно,
Ряд (13.5) - збігається, тому існує границя його частинної суми
Із того, що члени рядів (13.4) і (13.5) додатні, випливає, що і тоді в силу нерівності
Отже, частинні суми послідовності обмежені. Крім того, послідовність монотонно зростаюча, а тому вона має скінчену границю при
Отже, ряд (13.4) збігається.
2) Нехай ряд (13.4) - розбігається. Тоді ряд (13.5) не може збігатися, тому що за доведеною теоремою (п.1) ряд (13.4) повинен збігатися, а це протирічить нашому припущенню.
Приклад.1 Дослідити збіжність ряду
Р о з в ' я з о к. Ряд знакододатний. Для дослідження його на збіжність використаємо ознаку порівняння:
і ряд збігається ( тут ), а тому за першою ознакою порівняння даний ряд збігається.
Зауваження. Теорема має місце і у випадку, коли нерівності виконуються, починаючи з деякого