Зворотний зв'язок

Достатні ознаки збіжності рядів з додатніми членами, ознаки порівняння, Даламбера, радикальна та інтегральна ознаки Коші

Достатні ознаки збіжності рядів з додатніми членами, ознаки порівняння, Даламбера, радикальна та інтегральна ознаки Коші

План

Ознаки порівняння рядів з додатними членами

Ознака Даламбера

Радикальна ознака Коші

Інтегральна ознака Коші

13.3. Ознаки порівняння рядів з додатними членами

Збіжність чи розбіжність знакододатного ряду часто встановлюється шляхом порівняння його з іншим рядом, наперед відомо збіжним або розбіжним. В основі такого порівняння лежать наступні теореми.

Нехай задані два ряди з додатними членами

(13.4)

(13.5)

Теорема.1 Якщо члени ряду (13.4) не більші відповідних членів ряду (13.5), тобто , то із збіжності ряду (13.5) випливає збіжність ряду (13.4), а із розбіжності ряду (13.4) випливає розбіжність ряду (13.5).

Д о в е д е н н я. 1) Нехай ряд (13.5) - збігається. Позначимо частинні суми рядів (13.4) і (13.5) через і . Оскільки

,

то, очевидно,

Ряд (13.5) - збігається, тому існує границя його частинної суми

Із того, що члени рядів (13.4) і (13.5) додатні, випливає, що і тоді в силу нерівності

Отже, частинні суми послідовності обмежені. Крім того, послідовність монотонно зростаюча, а тому вона має скінчену границю при

Отже, ряд (13.4) збігається.

2) Нехай ряд (13.4) - розбігається. Тоді ряд (13.5) не може збігатися, тому що за доведеною теоремою (п.1) ряд (13.4) повинен збігатися, а це протирічить нашому припущенню.

Приклад.1 Дослідити збіжність ряду

Р о з в ' я з о к. Ряд знакододатний. Для дослідження його на збіжність використаємо ознаку порівняння:

і ряд збігається ( тут ), а тому за першою ознакою порівняння даний ряд збігається.

Зауваження. Теорема має місце і у випадку, коли нерівності виконуються, починаючи з деякого


Реферати!

У нас ви зможете знайти і ознайомитися з рефератами на будь-яку тему.







Не знайшли потрібний реферат ?

Замовте написання реферату на потрібну Вам тему

Замовити реферат