Інтегровані типи д-р 1-го порядку, розвязаних відносно похідної
ДР вигляду (2.62) називаються лінійними ДР порядку.
При воно називається однорідним
Формула (2.63). Так як ліва частина ліній на і однорідна відносно і . Р-ня (2.62) при називається неоднорідним. ДР (2.63) інтирується в квадратурах, так як воно являється ДР з відокремлюваними змінними.. Звідки (2.64).
Якщо то (2.65)
Загальні властивості ОДР :
Якщо та неперервні, то згідно теореми Пікара розвязок задачі Коші для ДР (2.63) існує і являється єдиним;
ЛДР (2.63) не має особливих розвязків;
ІК ОДР (2.63) не можуть пееретинати вісь , так як в противному випадку нарушалися б умови єдиності розвязку задачі Коші;
ДР (2.63) інваріантно відносно перетворення ;
Дійсно: формула , .
ДР (2.63) іваріантно відносно заміни (2.66) де -новазмінна, та - неперервні ф-ї, на . Тоді . Якщо - частинний розвязок ДР (2.63), то (2.67), де - константа, являється загальним його розвязком. Справедлива теорема.
Теорема (2.3) (про структуру розвязку лінійного неоднорідного ДР): Якщо - частинний розвязок неоднорідного ДР (2.62), а ДР (2.64)- загальний розвязок ОДР (2.63) то сума (2.68) являється загальним розвязком неоднорідного ДР (2.62).
Теорема доводиться безпосередньою подстановкою (2.68) в
р-ня (2.62).
Якщо відомо два частинних розвязки ДР (2.62), то загальний його розвязок записується без квадратур (2.69).
Розглянемо два методи интигрування неоднорідного ДР (2.67).
Метод Лагранжа (варіації довільної сталої).
Розвязок шукаємо у вигдяді (2.70). Підставимо (2.70) в (2.62). . Звідки ,
. Остаточно маємо (2.71).
загальний розв'язок ДР (2.62), який записаний через дві квадратури. Довільна стала входить завжди в загальний розв'язок лінійно.
Метод Ейлера заключається в тому, що ліва частина ДР (2.62) представляється у вигляді точної похідної шляхом домноження на деяку функцію Визначимо звідки тобто (ф-я) називається інтерувальним множником). Тому (2.72) звідки. З останнього співвідношення отримуємо ф-лу (2.71).
Загальний розв'язок при умові можна записати в Формі Коші .
Пр.2.9 Знайти загальний розв'язок ДР