Зворотний зв'язок

Інтегровані типи д-р 1-го порядку, розвязаних відносно похідної

Аналогічно (2.41) - загальний інтеграл в формі Коші.

Якщо неперервна на (c,d) і приймає нульове значення при , то ми повинні розглядаті ДР (2.38). Розвязок буде частинним, якщо в кожній його точці зберігається єдиність, і осоюливим, якщо в кожній його точці порушується єдиність. Якщо частинний розвязок, то ми його отримуємо при нескінченних значеннях , якщо особливий, то при .

Якщо в тоцчі перетворюється в нескінченність , то розглянемо ДР (2.39), яке має неперервну праву частину на (c,d). При цьому ДР на має єдиний розвязок .

Пр. 2.5

Розглянемо ДР .

Область визначення : .

Поскільки в т. дотичні паралельні осі OY, то розвязок в єдиний , .

б) Рівняння з відокремлюванними змінними.

Розглянемо р-ня в диференціалах виду

(2.42),

де - неперервні ф-ї своїх аргументів.

Деференціальне р-ня (2.42) називається р-ням з відокремленими змінними. Його можна переписати данним чином . Звідки маємо загальний розвязок в квадратурах. (2.43).

Якщо треба записати розвязок задачі Коші, то записують так . З умови (2.36) визначають . Отже (2.44) - розвязок задачі Коші (2.36), (2.42). При данних припущеннях особливих розвязків ДР (4.42) не має.

Рівняння вигляду

(2.45) -

називають р-ням з відокремлюваними змінними.

Припустимо, що , тоді розділемо обидві частини рівняння (2.45) на , отримуємо

(2.46).

Аналогічно записуємо

(2.47) -

загальний розвязок ДР (2.45) і

(2.48) -

розвязок задачі Коші (2.36) , (2.45). При діленні на ми можемо загубити розвязки, які визначаються рівняннями ,. Дійсно, нехай , то


Реферати!

У нас ви зможете знайти і ознайомитися з рефератами на будь-яку тему.







Не знайшли потрібний реферат ?

Замовте написання реферату на потрібну Вам тему

Замовити реферат