Інтегровані типи д-р 1-го порядку, розвязаних відносно похідної
Інтегровані типи д-р 1-го порядку, розвязаних відносно похідної
а). Неповні р-ня. ДР, яке не містить шуканої функції.
Має вигляд
, (2.33)
Припустимо, що f(x) являється неперервною на функцією.
Тоді ф-я
(2.34)
являэться загальним розв`язком д-р (1) в області a < x < b, -< y < + .(2.35)
Особливих розвязків ДР (2.33) немає.
Разом з ДР (2.33) розглянемо початкові умови (2.36)
Проінтегруємо ДР (2.34) від до x
Знаходимо с з умови (2.36)
(2.37) - загальний розвязок ДР (2.33) в формі Коші.
Якщо f(x) - неперервна на за виключенням точки , в якій приймає нескінченне значення, то замість ДР (2.34) будемо розглядати р-ня
(2.331)
Пряма являється розвязком ДР (2.331) і ми цей розвязок повинні приєднати до розвязку ДР (2.33). Цей розвязок може бути частинним або особливим в залежності від того зберігається чи порушується в будь-якій його точці єдність. Якщо - частинний розвязок, то його часто можна отримати з загального при нескінченних заначеннях с, якщо ж він являється особливим, то його отримують з загального при .
Р-ня, яке не містить незалежної змінної має вигляд
(2.38)
Припускаємо, що ф-я визначена і неперевна на інтервалі . Замість (2.38) розглянемо ДР
(2.39)
ДР (2.39) не містить шуканої функції і воно розвязується аналогічно ДР (2.33).
Якщо , y є (c,d), то
(2.40) - загальний рохвязок ДР (2.39) в області
c < y < d, -< x < + .