Інтегровані типи д-р 1-го порядку, розвязаних відносно похідної
отже - розвязок ДР (2.45).
Аналогічно .
Якщо ці розвязки не входять в (2,47) при деяких , то вони представляють собою особливі розвязки ДР (2.45).
З розвязку ми повинні викинути точку , так як в точці ДР (2.45) не визначає нахил поля . По тій же причині з розвязку викидають точку .
Таким чином розвязки і примикають до точки і можуть бути особливими. Других особливих розвязків не має.
Пр. 2.6.
Знайти загальний розвязок ДР:
.
Розвязок:
. .
.
.
.
.
в). Однорідні і узагальнено-однорідні ДР.
Розглянемо р-ня в диференціалах
(2.5),
в якому ф-ії і являються однорідними функціями одніеї і тієї ж степені однорідності.
Означення 2.4: ф-я називаеться однорідною степеню ,
якщо (2.49).
Якщо (2.49) виконуються при , то ф-я називаеться додатню-однорідною.
Однорідне р-ня завжди можна звести до рівняння вигляду
(2.50),
в якому функція однорідна функція нулбового виміру.
Однорідні рівняння завжди інтегруються в квадратурах заміною (2.51). При цьому р-ня (2.5) приводиться до рівняння з відокремлюваними змінними. Дійсно