Зворотний зв'язок

Основні правила диференціювання. Таблиця похідних

3. Похідна від показникової та логарифмічної функцій

1. Нехай маємо показникову функцію .

Знайдемо в довільній точці приріст :

Тоді

Перейдемо тут до границі при . Маємо

Таким чином, похідна від показникової функції існує в довільній точці і дорівнює

(6.31)

Зокрема,

(6.32)

2. Нехай маємо логарифмічну функцію , де . Згідно з означенням логарифмічної функції маємо таку рівність:

Оскільки , то

Отже,

(6.33)

Зокрема,

(6.34)

4. Похідні від тригонометричних функцій

1.. Знайдемо приріст функції в довільній точці :

Знайдемо відношення

Перейдемо в цій рівності до границі при :

Отже похідна від функції існує в довільній точці і дорівнює

(6.35)

2.. Аналогічно доводиться, що від функції в довільній точці існує похідна, яка дорівнює

(6.36)

3. Зобразимо у вигляді

Скориставшись формулою (6.20), маємо


Реферати!

У нас ви зможете знайти і ознайомитися з рефератами на будь-яку тему.







Не знайшли потрібний реферат ?

Замовте написання реферату на потрібну Вам тему

Замовити реферат