Розв’язування системи лінійних алгебраїчних рівнянь за правилом Крамера, методом Гаусса та за допомогою оберненої матриці. Теорема Кронекера-Капеллі, її застосування до дослідження і розв’язування системи лінійних алгебраїчних рівнянь
У різноманітних галузях людських знань (наука, виробництво, економіка, теорія масового обслуговування, тощо) часто виникають задачі, розв’язування яких приводить до систем лінійних рівнянь, в яких кількість рівнянь не обов’язково дорівнює кількості невідомих. Невідомих може бути більше або менше від кількості рівнянь. Для розв’язування таких систем розроблено ряд методів, у тому числі й за допомогою визначників. Але найпоширеніший з них - метод Жордана-Гаусса, який не потребує попередніх досліджень на сумісність або несумісність. У процесі розв’язування завжди стає ясно, має система розв’язки чи не має, єдиний її розв’язок чи ні. Оскільки для розв’язування системи рівнянь методом Жордана-Гаусса потрібно на порядок менше математичних операцій, ніж при розв’язуванні за формулами Крамера, то метод Жордана-Гаусса став основним при побудові стандартних програм для сучасних комп’ютерів.
Розглянемо систему лінійних рівнянь з невідомими (4.1).
Метод Жордана-Гаусса полягає в послідовному виключенні невідомих за допомогою елементарних перетворень:
1) множення рівняння на деяке число ;
2) заміна одного з рівнянь системи сумою з іншим рівнянням
тієї ж системи, помножимо на деяке число;
3) видалення з системи рівнянь тотожностей .
З допомогою перетворення 2) можна виключити деяке невідоме із усіх рівнянь системи, крім одного. Виберемо для цього рівняння з номером 1), що містить невідоме :
Це рівняння будемо називати ведучим, а - ведучим невідомим. Для виключення ведучого невідомого з рівняння з номером
додамо до нього ведуче рівняння, помножене на деяке число . Тоді одержимо
Щоб виключити невідоме , прирівняємо до нуля коефіцієнт при , тобто
Тоді рівняння матиме вигляд
одержимо систему рівнянь, в якій невідоме міститиметься тільки в -му рівнянні, а в інших рівняннях невідомого не буде. Таким самим способом, приймаючи в ролі ведучого інше рівняння, можна з усієї решти рівнянь виключити ведуче вибране невідоме. Продовжуючи цей процес доти, поки кожне рівняння побуде ведучим тільки один раз, прийдемо до системи рівнянь вигляду
У ролі ведучого послідовно бралися рівняння 1-ше та -те, а в ролі ведучого невідомого бралися послідовно . Якщо при цьому жодне рівняння не перетворювалося в тотожність , то зрозуміло, вони далі в процесі перетворення не беруть участі і тому виключаються з системи.
У цьому випадку в системі кількість рівнянь буде меншою, ніж .
Якщо описаний процес проводився в іншому порядку, то після його закінчення члени в рівняннях завжди можна переставити так, щоб система набрала вигляду
У випадку, коли в процесі розв’язування системи рівнянь де-небудь ліва частина якогось рівняння перетворюється в нуль, а права-не дорівнює нулю, то це означає, що система несумісна і тому обчислення треба припинити.