Зворотний зв'язок

Квадратичні форми, їх приведення до діагонального (канонічного) вигляду. Приведення рівняння кривої другого порядку на площині до канонічного вигляду на основі теорії квадратичних форм. Модель Леонтьєва багатогалузевої економіки

Балансовий принцип зв’язку різних галузей промисловості полягає в тому, що валовий випуск ої галузі повинен дорівнювати сумі об’ємів споживання в виробничій і невиробничій сферах. В найпростішій формі (гіпотеза лінійності) балансові співвідношення мають вигляд

Рівняння називаються рівняннями балансу.

В. Леонт’євим, на основі аналізу економіки США в період перед другою світовою війною, був встановлений важливий факт: на протязі тривалого часу величини змінюються дуже мало, а тому їх можна вважати постійними. Це явище стає зрозумілим в світлі того, що технологія виробництва залишається на одному й тому ж рівні тривалий час, а, значить, об’єм споживання ою галуззю продукції ої галузі при виробництві своєї продукції об’єму є технологічна константа.

В силу вказаного факту можна зробити таке припущення: для виробництва продукції ої галузі об’му потрібно використовувати продукцію ої галузі об’єму де постійні числа. При такому припущенні технологія виробництва приймається лінійною, а саме це припущення називається гіпотезою лінійності. При цьому числа називаються коефіцієнтами прямих затрат. Згідно з гіпотезою лінійності

Тоді рівняння можна записати в матричній формі

де вектор-стовпець об’єму виробленої продукції (вектор валового випуску), вектор-стовпець об’єму продукції кінцевого споживання (вектор кінцевого споживання), матриця коефіцієнтів прямих затрат:Переважно співвідношення називають рівнянням лінійного міжгалузевого балансу. Разом з описанням матричного представлення (4.38) це рівняння носить назву моделі Леонт’єва.

Рівняння міжгалузевого балансу можна використовувати вдвох випадках: 1) коли відомий вектор валового випуску , а потрібно розрахувати вектор кінцевого споживання 2) з метою планування із наступним формулюванням задачі: для періоду відомий вектор кінцевого споживання і потрібно визначити вектор валового випуску.

Система (4.37) має ту особливість, що всі елементи матриці і векторів повинні бути невід’ємними.

Матриця всі елементи якої невід’ємні, називається продуктивною, якщо для довільного вектора з невід’ємними компонентами існує розв’язок рівняння (4.37) – вектор всі елементи якого невід’ємні. В такому випадку і модель Леонт’єва називається продуктивною.

Для рівнянь типу (4.37) розроблена відповідна математична теорія дослідження розв’язку і його особливостей. Приведемо без доведення важливу теорему про продуктивність матриці

Теорема. Якщо для матриці з невід’ємними елементами і деякого вектора з невід’ємними компонентами рівняння (4.37) має розв’язок з невід’ємними компонентами, то матриця продуктивна.

Очевидно, що розв’язок (4.37) має вигляд :

(4.39)

Матриця називається матрицею повних затрат.

Існує декілька критеріїв продуктивності матриці Приведемо два з них.

Перший критерій продуктивності. Матриця продуктивна тоді і тільки тоді, коли матриця існує і її елементи невід’ємні.

Другий критерій продуктивності. Матриця з невід’ємними елементами продуктивна, якщо сума елементів за довільним її стовпцем (рядком) не перевищує одиниці:

причому хоча б для одного стовпця (рядка) ця сума строго менша одиниці.


Реферати!

У нас ви зможете знайти і ознайомитися з рефератами на будь-яку тему.







Не знайшли потрібний реферат ?

Замовте написання реферату на потрібну Вам тему

Замовити реферат