Векторна алгебра
якщо одиниця масштабу: .
Нульовим вектором називають вектор, початок і кінець якого співпадають.
Такий вектор позначають , його довжина дорівнює нулю, а напрям – довільний.
Рівними називають вектори, які мають однакові довжини та напрямки: .
Колінеарними називають вектори, які розташовані на одній прямій або паралельних прямих (дивуйся малий.2)
Малий.2
Усі зображені на малюнку 2 вектори – колінеарні.
Протилежними називають колінеарні протилежно спрямовані вектори однакової довжини.
Вектор, протилежний вектору позначають .
Ортом вектора називають вектор 0 довжина якого дорівнює одиниці, а напрям співпадає з , тобто = 0.
Компланарними називають вектори, що лежати в одній площині. В економічних дослідженнях n упорядкованих параметрів розглядають як вектор n вимірного простору Еn.
Матриця-рядок та матриця-стовпець містять упорядковані елементи, тому їх можна розглядати як вектори простору відповідного виміру.
Наприклад, є Е5 є Е4
Елементи вектора-рядка та вектора-стовпця називають координатами вектора. Смисл такої назви пояснимо нижче, після визначення проекцій вектора на координатній осі.
1.1.Деякі економічні приклади.
У розділі 4 частини 5 наведені приклади застосування векторів до задач мікроекономіки.
Так, використовувались вектор-рядок вартості V = (v1, v2, v3, v4), компоненти якого – вартості різної сировини, палива, робочої людино-години, та вектор-стовпець потреб інших галузей до продукції цехів 1, 2, 3.
Зараз ознайомимось з іншими прикладами застосування векторів.
Продуктивна функція. При аналізі закономірностей виробництва використовується продуктивна функція, яка, по суті, є співвідношенням між використаними у виробництві ресурсами і випущеною продукцією.
Нехай у деякому виробничому процесі є n виробничих ресурсів. Кількість і-го ресурсу, використованого за проміжок години t, позначимо хі. Тоді виробничі ресурси – це вектор Х = (х1, х2, … хn).
Нехай підприємство випускає m різних виробів. Кількість j виробу позначемо уі. Тоді випуск усіх виробів буде вектор Y = ( y1, y2, … ym)... Нехай - вектор параметрів виробництва (наприклад, різні види транспортних чи інших витрат). Продуктивна функція пов’язує вектори ресурсів Х, випуска Y та параметрів , тобто
Продуктивна функція задається аналітично або таблично.