Векторна алгебра
Ін. е (a+b)= Ін. е a+ Ін. е b (аддитивність),
Ін. е a = Ін. е a (однорідність).Кожна координата вектора в ортонормированном базисі дорівнює проекції цього вектора на вісь, обумовлену відповідним вектором базису.
У просторі розрізняють праві і ліві трійки векторів. Трійка некомпланарних векторів а, b, з називається правої, якщо спостерігачу з їхнього загального початку обхід кінців векторів a, b, з у зазначеному порядку здається совершающимся по годинній стрілці. У противному випадку a,b,c - ліва трійка. Права (ліва) трійка векторів розташовується так, як можуть бути розташовані відповідно великий, незігнутий вказівний і середній пальці правої (лівої) руки(див. рис). Усі праві (чи ліві) трійки векторів називаються однаково орієнтованими.
Нижче трійку векторів i,j,k варто вважати правої .
Нехай на площині заданий напрямок позитивного обертання (від i до j). Псевдоскалярним добутком aVb ненульових векторів a і b називають добуток їхніх модулів на синус кута позитивного обертання від a до k:
aVb=| a || b |*sin
Псевдоскалярний добуток нульових векторів думають рівним нулю. Псевдоскалярний добуток має властивості:
aVb=-bVa (антикоммутативність),
a (b+c)=aVb+aVc (дистрибутивність щодо додавання векторів),
(aVb)=aVb (сочетательність щодо множення на число),
aVb=0, лише якщо а=0 чи (і) b=0 чи а і b коллинеарни.
Якщо в ортонормированном базисі вектори а й і мають координати {a1,a2} {b1,b2}, то :
aVb=a1b1-a2b2.
Векторна алгебра і деякі її застосування.
Вектори.
Означення 1. Вектором називають величину, яка характеризується не тільки своїм числовим значенням (довжиною), алі й напрямком.
Вектори позначають або або а, b, c.
При позначенні вектора двома літерами (наприклад, ) перша літера вказує крапку початку вектора, а друга – крапку його кінця. В економіці вектори часто позначають однією великою літерою.
Довжину (модуль) вектора позначають , .
Геометрично вектор зображують як напрямлений відрізок (дивуйся малий.1)
Малий.1
Зображені на цьому малюнку вектори мають довжину: