Розклад функцій в степеневий ряд. Достатні умови розкладу в ряд Тейлора. Застосування степеневих рядів до наближеного обчислення
,
який збігається на інтервалі
За допомогою рядів можна обчислювати логарифми чисел. що містяться між нулем та одиницею. Виведемо формулу для обчислення натуральних логарифмів довільних цілих чисел.
Оскільки два збіжних ряди можна почленно віднімати, то, віднімаючи від рівності (13.63) почленно рівність , отримаємо:
Покладемо тоді При довільному натуральному маємо а тому
13.14. Обчислення означених інтегралів за допомогою рядів
Розглядаючи інтеграли, було відмічено, що існують означені інтеграли, котрі, як функції верхньої границі, не виражаються через елементарні функції в скінченому вигляді. Такі інтеграли інколи буває зручно обчислювати за допомогою рядів.
Розглянемо декілька прикладів.
1. Обчислити
з точністю до
Використаємо ряд для Тоді, замінюючи на одержимо
.
Цей ряд рівномірно збігається на всій числовій осі, тому його можна почленно інтегрувати на довільному проміжку. Інтегруючи даний ряд, одержимо Це знакочергуючий ряд. Тому, з точністю до, маємо
2. Обчислити інтеграл
Тут первісна не є елементарною функцією. Для обчислення цього інтеграла скористаємося рядом (2.42), замінивши на:
Інтегруючи обидві частини рівності в межах від до , одержимо:
За допомогою цієї рівності можна при довільному обчислити даний інтеграл з довільною точністю.
3. Обчислити з точністю до 0.0001 , де
Замінюючи в ряді на, одержимо
Інтегруючи почленно в межах від до будемо мати
Це знакозмінний ряд і , оскільки, , то з точністю до
обчислимо
13.15. Інтегрування диференціальних рівнянь за допомогою рядів
Якщо інтегрування диференціальних рівнянь не зводиться до квадратур, то застосовують наближені методи інтегрування рівняння. Одним із таких методів є представлення розв’язку рівняння у вигляді ряду Тейлора. Сума скінченого числа членів цього ряду буде наближено представляти шуканий частинний розв’язок.